留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海草促生微生物研究进展

王美玉 甄文全 张立娜

王美玉,甄文全,张立娜. 海草促生微生物研究进展[J]. 海洋学报,2024,46(x):1–10
引用本文: 王美玉,甄文全,张立娜. 海草促生微生物研究进展[J]. 海洋学报,2024,46(x):1–10
Wang meiyu,Zhen wenquan,Zhang lina. The research progress of plant growth-promoting microorganisms in seagrass[J]. Haiyang Xuebao,2024, 46(x):1–10
Citation: Wang meiyu,Zhen wenquan,Zhang lina. The research progress of plant growth-promoting microorganisms in seagrass[J]. Haiyang Xuebao,2024, 46(x):1–10

海草促生微生物研究进展

基金项目: 唐山师范学院科学研究基金项目成果(No. 2023B19)。
详细信息
    作者简介:

    王美玉(1993—),女,河北省衡水人,从事微生物与植物互作机制研究。E-mail:wang903108175@163.com

    通讯作者:

    甄文全(1971—),男,北京市人,副教授,从事海洋生物多样性和环境效应机制研究。Email:112670423@qq.com

  • 中图分类号: Q939.99

The research progress of plant growth-promoting microorganisms in seagrass

  • 摘要: 摘要: 海草床在保护海洋生物多样性、缓解海水酸化、防止土壤侵蚀等方面发挥着关键作用。但是,全球气候变化以及人类活动严重影响海草的生存,造成海草大面积退化,威胁近岸海域生态系统安全。近年来,微生物促进海草床能量流动和海草生长发育的作用逐渐受到重视,植物促生微生物(Plant Growth-Promoting Microorganisms,PGPM)有望应用于海草苗种培育、植株移植、种子种植等海草床修复的关键技术中。本文综述了国内外关于微生物与海草相互作用促进植株生长和抵御环境胁迫的研究情况,总结了PGPM在高温、高盐、弱光等环境条件下增强植物胁迫耐受性的作用机制,提出利用现代分子生物学技术筛选海草促生微生物,明确其定植部位,探究不同环境条件下PGPM与海草相互作用的分子机制,为植物促生微生物PGPM应用于海草床修复及海草保护提供参考。
  • 图  1  植物促生微生物PGPM与海草相互作用总概念图

    Fig.  1  Overview of the interaction between plant growth-promoting microorganisms and seagrass

  • [1] Lincoln S, Vannoni M, Benson L, et al. Assessing intertidal seagrass beds relative to water quality in Vanuatu, South Pacific[J]. Marine Pollution Bulletin, 2021, 163: 111936. doi: 10.1016/j.marpolbul.2020.111936
    [2] Short F, Carruthers T, Dennison W, et al. Global seagrass distribution and diversity: a bioregional model[J]. Journal of Experimental Marine Biology and Ecology, 2007, 350(1/2): 3−20.
    [3] Cheng Lijing, Abraham J, Trenberth K E, et al. Another year of record heat for the Oceans[J]. Advances in Atmospheric Sciences, 2023, 40(6): 963−974. doi: 10.1007/s00376-023-2385-2
    [4] Marbà N, Duarte C M. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality[J]. Global Change Biology, 2010, 16(8): 2366−2375.
    [5] Schubert N, Colombo-Pallota M F, Enríquez S. Leaf and canopy scale characterization of the photoprotective response to high‐light stress of the seagrass Thalassia testudinum[J]. Limnology and Oceanography, 2015, 60(1): 286−302.
    [6] Marín-Guirao L, Sandoval-Gil J M, Bernardeau-Esteller J, et al. Responses of the Mediterranean seagrass Posidonia oceanica to hypersaline stress duration and recovery[J]. Marine Environmental Research, 2013, 84: 60−75. doi: 10.1016/j.marenvres.2012.12.001
    [7] 蔡泽富, 陈石泉, 吴钟解, 等. 海草床微生物研究进展[J]. 海洋学报, 2021, 43(4): 1−13.

    Cai Zefu, Chen Shiquan, Wu Zhongjie, et al. The research progress of microorganisms in seagrass meadows[J]. Haiyang Xuebao, 2021, 43(4): 1−13.
    [8] 国家市场监督管理总局, 国家标准化管理委员会. GB/T 41339.4-2023, 海洋生态修复技术指南 第4部分: 海草床生态修复[S]. 北京: 中国标准出版社, 2023.

    State Administration of Market Supervision and Administration of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 41339.4-2023, Technical guideline for marine ecological restoration—Part 4: ecological restoration of seagrass bed[S]. Beijing: Standards Press of China, 2023.
    [9] 胡晓珂, 孙延瑜, 刘鹏远, 等. 微生物参与海草床元素循环及其生态修复功能[J]. 微生物学报, 2023, 63(5): 1899−1916.

    Hu Xiaoke, Sun Yanyu, Liu Pengyuan, et al. The contribution of microorganisms of biogeochemical cycling to seagrass meadows and their restore functions[J]. Acta Microbiologica Sinica, 2023, 63(5): 1899−1916.
    [10] Celdrán D, Espinosa E, Sánchez-Amat A, et al. Effects of epibiotic bacteria on leaf growth and epiphytes of the seagrass Posidonia oceanica[J]. Marine Ecology Progress Series, 2012, 456: 21−27. doi: 10.3354/meps09672
    [11] Zhou Weiguo, Ling Juan, Shen Xiaomei, et al. Inoculation with plant growth-promoting rhizobacteria improves seagrass Thalassia hemprichii photosynthesis performance and shifts rhizosphere microbiome[J]. Marine Environmental Research, 2024, 193: 106260. doi: 10.1016/j.marenvres.2023.106260
    [12] Compant S, Clément C, Sessitsch A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization[J]. Soil Biology and Biochemistry, 2010, 42(5): 669−678. doi: 10.1016/j.soilbio.2009.11.024
    [13] Tarquinio F, Hyndes G A, Laverock B, et al. The seagrass holobiont: understanding seagrass-bacteria interactions and their role in seagrass ecosystem functioning[J]. FEMS Microbiology Letters, 2019, 366(6): fnz057.
    [14] Mohr W, Lehnen N, Ahmerkamp S, et al. Terrestrial-type nitrogen-fixing symbiosis between seagrass and a marine bacterium[J]. Nature, 2021, 600(7887): 105−109. doi: 10.1038/s41586-021-04063-4
    [15] Sharma S B, Sayyed R Z, Trivedi M H, et al. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils[J]. SpringerPlus, 2013, 2(1): 587. doi: 10.1186/2193-1801-2-587
    [16] Liu Pengyuan, Zou Songbao, Zhang Haikun, et al. Genome-resolved metagenomics provides insights into the microbial-mediated sulfur and nitrogen cycling in temperate seagrass meadows[J]. Frontiers in Marine Science, 2023, 10: 1245288. doi: 10.3389/fmars.2023.1245288
    [17] Sun Feifei, Zhang Xiaoli, Zhang Qianqian, et al. Seagrass (Zostera marina) colonization promotes the accumulation of diazotrophic bacteria and alters the relative abundances of specific bacterial lineages involved in benthic carbon and sulfur cycling[J]. Applied and Environmental Microbiology, 2015, 81(19): 6901−6914. doi: 10.1128/AEM.01382-15
    [18] 林显程, 董俊德, 周卫国, 等. 海南新村湾海草促生菌株分离及多样性[J]. 应用海洋学学报, 2021, 40(2): 200−207. doi: 10.3969/J.ISSN.2095-4972.2021.02.003

    Lin Xiancheng, Dong Junde, Zhou Weiguo, et al. Isolation and diversity of plant growth-promoting bacteria on seagrass in Xincun Bay, Hainan[J]. Journal of Applied Oceanography, 2021, 40(2): 200−207. doi: 10.3969/J.ISSN.2095-4972.2021.02.003
    [19] Kumar M, Wu Peichi, Tsai J C, et al. Biodegradation of soil-applied polycyclic aromatic hydrocarbons by sulfate-reducing bacterial consortium[J]. Journal of Environmental Science and Health, Part A, 2009, 44(1): 12−20. doi: 10.1080/10934520802515178
    [20] Crump B C, Wojahn J M, Tomas F, et al. Metatranscriptomics and amplicon sequencing reveal mutualisms in seagrass microbiomes[J]. Frontiers in Microbiology, 2018, 9: 388. doi: 10.3389/fmicb.2018.00388
    [21] Cúcio C, Overmars L, Engelen A H, et al. Metagenomic analysis shows the presence of bacteria related to free-Living forms of Sulfur-Oxidizing chemolithoautotrophic symbionts in the rhizosphere of the seagrass Zostera marina[J]. Frontiers in Marine Science, 2018, 5: 171.
    [22] Zhang Haikun, Xie Jingyi, Sun Yanyu, et al. A novel green approach for fabricating visible, light sensitive nano-broccoli-like antimony trisulfide by marine Sb(v)-reducing bacteria: revealing potential self-purification in coastal zones[J]. Enzyme and Microbial Technology, 2020, 136: 109514. doi: 10.1016/j.enzmictec.2020.109514
    [23] Hou Hongmin, Lv Lingling, Huo Heqiang, et al. Genome-wide identification of the ABA receptors genes and their response to abiotic stress in apple[J]. Plants, 2020, 9(8): 1028. doi: 10.3390/plants9081028
    [24] Narayanan Z, Glick B R. Secondary metabolites produced by plant growth-promoting bacterial endophytes[J]. Microorganisms, 2022, 10(10): 2008.
    [25] Tarquinio F, Attlan O, Vanderklift M A, et al. Distinct endophytic bacterial communities inhabiting seagrass seeds[J]. Frontiers in Microbiology, 2021, 12: 703014. doi: 10.3389/fmicb.2021.703014
    [26] Sabzi-Nojadeh M, Pouresmaeil M, Amani M, et al. Colonization of Satureja hortensis L. (Summer savory) with Trichoderma harzianum alleviates salinity stress via improving physio-biochemical traits and biosynthesis of secondary metabolites[J]. Industrial Crops and Products, 2024, 208: 117831. doi: 10.1016/j.indcrop.2023.117831
    [27] Li Xiaogang, Jousset A, de Boer W, et al. Legacy of land use history determines reprogramming of plant physiology by soil microbiome[J]. The ISME Journal, 2019, 13(3): 738−751.
    [28] 刘鹏远, 张海坤, 陈琳, 等. 黄渤海海草分布区日本鳗草根际微生物群落结构特征及其功能分析[J]. 微生物学报, 2019, 59(8): 1484−1499.

    Liu Pengyuan, Zhang Haikun, Chen Lin, et al. Rhizosphere microbial community structure and function of Zostera japonica in the distribution area of seagrass beds in the Yellow Sea and Bohai Sea[J]. Acta Microbiologica Sinica, 2019, 59(8): 1484−1499.
    [29] Thomas F, Giblin A E, Cardon Z G, et al. Rhizosphere heterogeneity shapes abundance and activity of sulfur-oxidizing bacteria in vegetated salt marsh sediments[J]. Frontiers in Microbiology, 2014, 5: 309.
    [30] Wang Yaping, Wang Jian, Wang Wei. Identification of mycoparasitism-related genes in Trichoderma harzianum T4 that are active against Colletotrichum musae[J]. Archives of Microbiology, 2024, 206(1): 29. doi: 10.1007/s00203-023-03767-7
    [31] Saranya K, Sundaramanickam A, Manupoori S, et al. Screening of multi-faceted phosphate-solubilising bacterium from seagrass meadow and their plant growth promotion under saline stress condition[J]. Microbiological Research, 2022, 261: 127080. doi: 10.1016/j.micres.2022.127080
    [32] Petersen L E, Marner M, Labes A, et al. Rapid metabolome and bioactivity profiling of fungi associated with the leaf and rhizosphere of the baltic seagrass Zostera marina[J]. Marine Drugs, 2019, 17(7): 419.
    [33] Cheng Lijing, Trenberth K E, Gruber N, et al. Improved estimates of changes in upper ocean salinity and the hydrological cycle[J]. Journal of Climate, 2020, 33(23): 10357−10381. doi: 10.1175/JCLI-D-20-0366.1
    [34] Pankaj U, Singh D N, Singh G, et al. Microbial inoculants assisted growth of Chrysopogon zizanioides promotes phytoremediation of salt affected soil[J]. Indian Journal of Microbiology, 2019, 59(2): 137−146. doi: 10.1007/s12088-018-00776-9
    [35] Cambridge M L, Zavala-Perez A, Cawthray G R, et al. Effects of high salinity from desalination brine on growth, photosynthesis, water relations and osmolyte concentrations of seagrass Posidonia australis[J]. Marine Pollution Bulletin, 2017, 115(1/2): 252−260.
    [36] Fernández-Torquemada Y, Sánchez-Lizaso J L. Effects of salinity on leaf growth and survival of the Mediterranean seagrass Posidonia oceanica (L. ) Delile[J]. Journal of Experimental Marine Biology and Ecology, 2005, 320(1): 57−63. doi: 10.1016/j.jembe.2004.12.019
    [37] Martin B C, Alarcon M S, Gleeson D, et al. Root microbiomes as indicators of seagrass health[J]. FEMS Microbiology Ecology, 2020, 96(2): fiz201. doi: 10.1093/femsec/fiz201
    [38] Fraser M W, Gleeson D B, Grierson P F, et al. Metagenomic evidence of microbial community responsiveness to phosphorus and salinity gradients in seagrass sediments[J]. Frontiers in Microbiology, 2018, 9: 1703. doi: 10.3389/fmicb.2018.01703
    [39] Sukweenadhi J, Kim Y J, Choi E S, et al. Paenibacillus yonginensis DCY84T induces changes in Arabidopsis thaliana gene expression against aluminum, drought, and salt stress[J]. Microbiological Research, 2015, 172: 7−15. doi: 10.1016/j.micres.2015.01.007
    [40] Upadhyay S K, Singh D P. Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment[J]. Plant Biology, 2015, 17(1): 288−293. doi: 10.1111/plb.12173
    [41] 崔金香, 田黎, 高伟, 等. 几株具有农药活性的海洋微生物菌株诱导番茄抗盐作用与机理研究[J]. 农业环境科学学报, 2010, 29(11): 2100−2106.

    Cui Jinxiang, Tian Li, Gao Wei, et al. Marine microorganisms producing pesticide induce salt tolerance in tomato and its mechanism[J]. Journal of Agro-Environment Science, 2010, 29(11): 2100−2106.
    [42] Xiong Youwei, Li Xuewei, Wang Tiantian, et al. Root exudates-driven rhizosphere recruitment of the plant growth-promoting rhizobacterium Bacillus flexus KLBMP 4941 and its growth-promoting effect on the coastal halophyte Limonium sinense under salt stress[J]. Ecotoxicology and Environmental Safety, 2020, 194: 110374.
    [43] Touchette B W. Seagrass-salinity interactions: physiological mechanisms used by submersed marine angiosperms for a life at sea[J]. Journal of Experimental Marine Biology and Ecology, 2007, 350(1/2): 194−215.
    [44] Vohník M, Borovec O, Župan I, et al. Anatomically and morphologically unique dark septate endophytic association in the roots of the Mediterranean endemic seagrass Posidonia oceanica[J]. Mycorrhiza, 2015, 25(8): 663−672. doi: 10.1007/s00572-015-0642-7
    [45] Latif Khan A, Hamayun M, Ahmad N, et al. Salinity stress resistance offered by endophytic fungal interaction between Penicillium minioluteum LHL09 and Glycine max. L[J]. Journal of Microbiology and Biotechnology, 2011, 21(9): 893−902.
    [46] Ren Chenggang, Kong Cuncui, Yan Kun, et al. Transcriptome analysis reveals the impact of arbuscular mycorrhizal symbiosis on Sesbania cannabina expose to high salinity[J]. Scientific Reports, 2019, 9(1): 2780. doi: 10.1038/s41598-019-39463-0
    [47] Haque S I, Matsubara Y I. Salinity tolerance and sodium localization in mycorrhizal strawberry plants[J]. Communications in Soil Science and Plant Analysis, 2018, 49(22): 2782−2792. doi: 10.1080/00103624.2018.1538376
    [48] Yang Xue, Yu Hongqing, Zhang Tao, et al. Arbuscular mycorrhizal fungi improve the antioxidative response and the seed production of Suaedoideae species Suaeda physophora pall under salt stress[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2016, 44(2): 533−540. doi: 10.15835/nbha44210543
    [49] Kong Fanna, Zhou Yang, Sun Peipei, et al. Generation and analysis of expressed sequence tags from the salt-tolerant eelgrass species, Zostera marina[J]. Acta Oceanologica Sinica, 2013, 32(8): 68−78. doi: 10.1007/s13131-013-0343-z
    [50] Barkla B J, Vera-Estrella R, Camacho-Emiterio J, et al. Na+/H+ exchange in the halophyte Mesembryanthemum crystallinum is associated with cellular sites of Na+ storage[J]. Functional Plant Biology, 2002, 29(9): 1017−1024.
    [51] Kong Fanna, Li Hong, Sun Peipei, et al. De novo assembly and characterization of the transcriptome of seagrass Zostera marina using Illumina paired-end sequencing[J]. PLoS One, 2014, 9(11): e112245. doi: 10.1371/journal.pone.0112245
    [52] Usuki F, Narisawa K. A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage[J]. Mycologia, 2007, 99(2): 175−184. doi: 10.1080/15572536.2007.11832577
    [53] Yuan Zhilin, Druzhinina I S, Labbé J, et al. Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity[J]. Scientific Reports, 2016, 6(1): 32467. doi: 10.1038/srep32467
    [54] Repolho T, Duarte B, Dionísio G, et al. Seagrass ecophysiological performance under ocean warming and acidification[J]. Scientific Reports, 2017, 7(1): 41443. doi: 10.1038/srep41443
    [55] Sharma P, Jha A B, Dubey R S, et al. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions[J]. Journal of Botany, 2012, 2012: 217037.
    [56] Zheng Ying, Chiang T Y, Huang Chaoli, et al. Highly diverse endophytes in roots of Cycas bifida (Cycadaceae), an ancient but endangered gymnosperm[J]. Journal of Microbiology, 2018, 56(5): 337−345.
    [57] Kobayashi I, Watanabe S, Kanesaki Y, et al. Conserved two-component Hik34-Rre1 module directly activates heat-stress inducible transcription of major chaperone and other genes in Synechococcus elongatus PCC 7942[J]. Molecular Microbiology, 2017, 104(2): 260−277. doi: 10.1111/mmi.13624
    [58] Liang Chengwei, Zhang Xiaowen, Chi Xiaoyuan, et al. Serine/threonine protein kinase SpkG is a candidate for high salt resistance in the unicellular cyanobacterium Synechocystis sp. PCC 6803[J]. PLoS One, 2011, 6(5): e18718. doi: 10.1371/journal.pone.0018718
    [59] Zhang Jian, Yang Qingsong, Yue Weizhong, et al. Seagrass Thalassia hemprichii and associated bacteria co-response to the synergistic stress of ocean warming and ocean acidification[J]. Environmental Research, 2023, 236: 116658. doi: 10.1016/j.envres.2023.116658
    [60] Sasse J, Martinoia E, Northen T. Feed your friends: do plant exudates shape the root microbiome?[J]. Trends in Plant Science, 2018, 23(1): 25−41. doi: 10.1016/j.tplants.2017.09.003
    [61] Zhou Zhihao, Wang Yue, Ye Xinyu, et al. Signaling molecule hydrogen sulfide Improves seed germination and seedling growth of maize (Zea mays L. ) under high temperature by inducing antioxidant system and osmolyte biosynthesis[J]. Frontiers in Plant Science, 2018, 9: 1288. doi: 10.3389/fpls.2018.01288
    [62] Capaldi F R, Gratão P L, Reis A R, et al. Sulfur metabolism and stress defense responses in plants[J]. Tropical Plant Biology, 2015, 8(3/4): 60−73.
    [63] 张子嘉. 不同微生物菌剂对多年生黑麦草耐热性与抗旱性的影响[D]. 荆州: 长江大学, 2022.

    Zhang Zijia. Effects of different microbial agents on heat resistence and drought resistance of Lolium perenne[D]. Jingzhou: Yangtze University, 2022.
    [64] Khan M A, Asaf S, Khan A L, et al. Thermotolerance effect of plant growth-promoting Bacillus cereus SA1 on soybean during heat stress[J]. BMC Microbiology, 2020, 20(1): 175. doi: 10.1186/s12866-020-01822-7
    [65] Bruno L B, Karthik C, Ma Ying, et al. Amelioration of chromium and heat stresses in Sorghum bicolor by Cr6+ reducing-thermotolerant plant growth promoting bacteria[J]. Chemosphere, 2020, 244: 125521. doi: 10.1016/j.chemosphere.2019.125521
    [66] Franssen S U, Gu J, Bergmann N, et al. Transcriptomic resilience to global warming in the seagrass Zostera marina, a marine foundation species[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(48): 19276−19281.
    [67] Chen Siting, Qiu Guanglong. Overexpression of Zostera japonica heat shock protein gene ZjHsp70 enhances the thermotolerance of transgenic Arabidopsis[J]. Molecular Biology Reports, 2022, 49(7): 6189−6197.
    [68] Booth M W, Sinclair E A, Jung E M U, et al. Comparative gene co-expression networks show enrichment of brassinosteroid and vitamin B processes in a seagrass under simulated ocean warming and extreme climatic events[J]. Frontiers in Plant Science, 2024, 15: 1309956. doi: 10.3389/fpls.2024.1309956
    [69] Bi Yinli, Xue Zike. Dark septate endophyte inoculation enhances antioxidant activity in Astragalus membranaceus var. mongholicus under heat stress[J]. Physiologia Plantarum, 2023, 175(6): e14054. doi: 10.1111/ppl.14054
    [70] Fang Yan, Liang Liyan, Liu Shuo, et al. Wheat cultivars with small root length density in the topsoil increased post-anthesis water use and grain yield in the semi-arid region on the Loess Plateau[J]. European Journal of Agronomy, 2021, 124: 126243. doi: 10.1016/j.eja.2021.126243
    [71] York P H, Carter A B, Chartrand K, et al. Dynamics of a deep-water seagrass population on the Great Barrier Reef: annual occurrence and response to a major dredging program[J]. Scientific Reports, 2015, 5(1): 13167. doi: 10.1038/srep13167
    [72] Sousa-Dias A, Melo R A. Long-term abundance patterns of macroalgae in relation to environmental variables in the Tagus Estuary (Portugal)[J]. Estuarine, Coastal and Shelf Science, 2008, 76(1): 21−28.
    [73] Ballesteros E, Cebrian E, Alcoverro T. Mortality of shoots of Posidonia oceanica following meadow invasion by the red alga Lophocladia lallemandii[J]. Botanica Marina, 2007, 50(1): 8−13. doi: 10.1515/BOT.2007.002
    [74] Martin B C, Gleeson D, Statton J, et al. Low light availability alters root exudation and reduces putative beneficial microorganisms in seagrass roots[J]. Frontiers in Microbiology, 2018, 8: 2667. doi: 10.3389/fmicb.2017.02667
    [75] Hou Shiji, Thiergart T, Vannier N, et al. A microbiota-root-shoot circuit favours Arabidopsis growth over defence under suboptimal light[J]. Nature Plants, 2021, 7(8): 1078−1092. doi: 10.1038/s41477-021-00956-4
    [76] Gnanasekaran C, Govindan R, Kumar N M, et al. Isolation and molecular detection of endophytic actinomycetes Nocardiopsis dassonvillei DMS 1 (MH900216) from marine sea grasses with bacterial inactivation[J]. Biocatalysis and Agricultural Biotechnology, 2023, 54: 102938.
    [77] Passari A K, Upadhyaya K, Singh G, et al. Enhancement of disease resistance, growth potential, and photosynthesis in tomato (Solanum lycopersicum) by inoculation with an endophytic actinobacterium, Streptomyces thermocarboxydus strain BPSAC147[J]. PLoS One, 2019, 14(7): e0219014. doi: 10.1371/journal.pone.0219014
    [78] Gao Yan, Ning Qing, Yang Yuanzhu, et al. Endophytic Streptomyces hygroscopicus OsiSh-2-mediated balancing between growth and disease resistance in host rice[J]. mBio, 2021, 12(4): e0156621. doi: 10.1128/mBio.01566-21
    [79] Saejung C, Chaiyarat A, Sanoamuang L O. Optimization of three anoxygenic photosynthetic bacteria as feed to enhance growth, survival, and water quality in fairy shrimp (Streptocephalus sirindhornae) cultivation[J]. Aquaculture, 2021, 534: 736288. doi: 10.1016/j.aquaculture.2020.736288
    [80] 易军, 符慧娟, 李星月, 等. 光合菌剂对弱光照生态区小麦光合特性和产量的影响[J]. 麦类作物学报, 2022, 42(8): 1039−1045. doi: 10.7606/j.issn.1009-1041.2022.08.14

    Yi Jun, Fu Huijuan, Li Xingyue, et al. Effect of photosynthetic bacteria on photosynthetic characteristics and yield of wheat in ecological area with low-light[J]. Journal of Triticeae Crops, 2022, 42(8): 1039−1045. doi: 10.7606/j.issn.1009-1041.2022.08.14
    [81] Bengtsson M M, Bühler A, Brauer A, et al. Eelgrass leaf surface microbiomes are locally variable and highly correlated with epibiotic eukaryotes[J]. Frontiers in Microbiology, 2017, 8: 1312. doi: 10.3389/fmicb.2017.01312
    [82] 黄志, 许炜萍, 郁昉斌, 等. 接种AMF对弱光环境及盐胁迫下甜瓜光合特性的影响[J]. 西北植物学报, 2018, 38(2): 307−315. doi: 10.7606/j.issn.1000-4025.2018.02.0307

    Huang Zhi, Xu Weiping, Yu Fangbin, et al. Photosynthesis responses of Cucumis melo seedlings to Glomus under low light and salt stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(2): 307−315. doi: 10.7606/j.issn.1000-4025.2018.02.0307
    [83] Zhang Haihan, Tang Ming, Chen Hui, et al. Effects of a dark-septate endophytic isolate LBF-2 on the medicinal plant Lycium barbarum L.[J]. The Journal of Microbiology, 2012, 50(1): 91−96. doi: 10.1007/s12275-012-1159-9
    [84] Yaakub S M, Chen E, Bouma T J, et al. Chronic light reduction reduces overall resilience to additional shading stress in the seagrass Halophila ovalis[J]. Marine Pollution Bulletin, 2014, 83(2): 467−474. doi: 10.1016/j.marpolbul.2013.11.030
    [85] Olesen B, Enríquez S, Duarte C M, et al. Depth-acclimation of photosynthesis, morphology and demography of Posidonia oceanica and Cymodocea nodosa in the Spanish Mediterranean Sea[J]. Marine Ecology Progress Series, 2002, 236: 89−97. doi: 10.3354/meps236089
    [86] Wang Zhenghong, Song Yi. Toward understanding the genetic bases underlying plant-mediated "cry for help" to the microbiota[J]. iMeta, 2022, 1(1): e8. doi: 10.1002/imt2.8
  • 加载中
图(1)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  3
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-05
  • 修回日期:  2024-11-11
  • 网络出版日期:  2024-11-22

目录

    /

    返回文章
    返回