留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气旋式中尺度涡诱发夏秋季黑潮入侵南海的特征研究

樊呈洋 孙忠斌 徐州庆 谢湄洁 商巩 张志伟

樊呈洋,孙忠斌,徐州庆,等. 气旋式中尺度涡诱发夏秋季黑潮入侵南海的特征研究[J]. 海洋学报,2025,47(x):1–14
引用本文: 樊呈洋,孙忠斌,徐州庆,等. 气旋式中尺度涡诱发夏秋季黑潮入侵南海的特征研究[J]. 海洋学报,2025,47(x):1–14
Fan Chengyang,Sun Zhongbin,Xu Zhouqing, et al. Characteristics of the summer-autumn Kuroshio intrusion into the South China Sea induced by cyclonic mesoscale eddies[J]. Haiyang Xuebao,2025, 47(x):1–14
Citation: Fan Chengyang,Sun Zhongbin,Xu Zhouqing, et al. Characteristics of the summer-autumn Kuroshio intrusion into the South China Sea induced by cyclonic mesoscale eddies[J]. Haiyang Xuebao,2025, 47(x):1–14

气旋式中尺度涡诱发夏秋季黑潮入侵南海的特征研究

基金项目: 国家自然科学基金项目(42222601; 42206015);国家自然科学基金委员会共享航次计划项目(42249905)。
详细信息
    作者简介:

    樊呈洋(2000—),男,山东省郓城县人,硕士研究生,从事海洋中尺度涡研究。 E-mail:fcy@stu.ouc.edu.cn

    通讯作者:

    张志伟,教授,主要从事海洋中尺度与亚中尺度动力学研究。E-mail: zzw330@ouc.edu.cn

Characteristics of the summer-autumn Kuroshio intrusion into the South China Sea induced by cyclonic mesoscale eddies

  • 摘要: 太平洋黑潮入侵南海对南海的环流、温盐平衡、中尺度涡、局地气候等具有重要影响。黑潮入侵南海多发生在冬季,夏秋季(5–10月)入侵较弱。然而,通过分析2023年南海东北部的现场观测数据发现,吕宋海峡西侧气旋式中尺度涡可以诱发夏秋季黑潮显著入侵南海,使南海东北部水体最大盐度达到34.80。结合卫星高度计数据和再分析资料,证实了该气旋涡诱发黑潮入侵南海现象,气旋涡的平流作用共计输运3.05×1013 m3黑潮水进入南海。进一步统计表明,1993–2023年共发生25次气旋涡诱发夏秋季黑潮入侵南海现象。31年内,气旋涡诱发的夏秋季黑潮入侵南海的水体通量增量达到0.29 Sv,占夏秋季吕宋海峡上层总通量的8.1%,气旋涡的流速南北非对称性可能是增强黑潮入侵南海通量的主要原因。以上结果表明气旋涡诱发夏秋季黑潮入侵南海在南海和西北太平洋水体交换中扮演着不可忽视的重要作用。
  • 图  1  南海东北部和西太平洋水深分布图(a)及观测期间海面高度异常和绝对地转流分布图(b)

    (a)中红色实线、黄色虚线和绿色虚线分别代表黑潮的跨隙态、分叉态和流套态路径;200、1 000、2 000和3 000 m等深线用黑色实线表示;(b)中紫色五角星代表CTD站位;红色和黑色方框分别代表图3图8中“南海水”和“黑潮水”温盐曲线的计算区域;蓝色方框代表图3中“9月平均”温盐曲线的计算区域;绿色实线代表图2a-f和图6经向断面位置

    Fig.  1  (a) Depth distribution of northeast South China Sea and West Pacific Ocean, (b) Sea level anomaly and absolute geostrophic current distribution during observation

    (a) Red solid line, yellow dashed line and green dashed line represent the leaping, leaking and looping paths of Kuroshio, respectively; The 200, 1 000, 2 000 and 3 000 m isobath lines are shown as solid black lines; (b) Purple stars represent CTD stations; The red and black boxes represent the calculation areas of the temperature and salinity curves of "South China Sea" and " Kuroshio" in Fig.3 and Fig.8, respectively; The blue box represents the calculation areas of the temperature and salinity curves of "September mean" in Fig.3; The solid green line represents the position of the meridional section in Fig.2a-f and Fig.6

    图  2  1993–2023年期间气候态平均的CMEMS再分析数据与WOA数据和卫星高度计数据对比图。(a-c) WOA盐度、CMEMS盐度和CMEMS相较于WOA的盐度偏差断面分布图,(d-f) WOA温度、CMEMS温度和CMEMS相较于WOA的温度偏差断面分布图,(g-i) 卫星高度计纬向绝对地转流、CMEMS纬向绝对地转流和CMEMS相较于卫星高度计的纬向绝对地转流速差分布图

    (a-f)断面的位置标注在图1b

    Fig.  2  Comparison of climatological CMEMS reanalysis data with WOA data and satellite altimeter data from 1993 to 2023. (a-c) WOA salinity, CMEMS salinity, and salinity deviation of CMEMS compared to WOA; (d-f) WOA temperature, CMEMS temperature, and temperature deviation of CMEMS compared to WOA; (g-i) Satellite altimeter zonal absolute geostrophic current, CMEMS zonal absolute geostrophic current and the difference in zonal absolute geostrophic current between CMEMS and satellite altimeter data

    The location of sections in subfigure a-f is indicated in Fig.1b

    图  3  船载CTD观测数据温盐曲线图(a)及与船载CTD数据观测位置和时间相对应的CMEMS再分析数据温盐曲线图(b)

    “南海水”、“9月平均”和“黑潮水”通过WOA气候态数据计算,计算区域标注在图1b;红色和灰色阴影分别代表接近南海水和黑潮水特征的水体;灰色实线为等位势密度线

    Fig.  3  Temperature-Salinity diagram of shipborne CTD observation data (a) and Temperature-Salinity diagram of CMEMS reanalysis data corresponding to the observation position and time of shipborne CTD data (b)

    Temperature and salinity curves of "South China Sea", "September mean" and " Kuroshio" were calculated by WOA climatological data, and the calculation areas were marked in Fig.1b; The red and gray shadings represent water masses close to the water of the South China Sea and Kuroshio, respectively; Gray solid lines denote contours of potential density

    图  4  2023年夏秋季气旋式中尺度涡CE发展演变过程图

    灰色虚线、黑色实线和灰色实线分别为小于、等于和大于0 cm的SLA等值线,间隔3 cm;圆点及其颜色代表示踪粒子位置和布放粒子时间;(a)中绿色方框标记了示踪粒子的布放区域;(e)中紫色五角星代表CTD站位

    Fig.  4  The evolution process of cyclonic mesoscale eddy (CE) in the summer-autumn of 2023

    Gray dashed, black solid and gray solid lines represent SLA contours less than, equal to, and greater than 0 cm with an interval of 3 cm, respectively; The dots and its color represent the position of the tracer particles and the time of the particles placement, respectively; (a) The green box represents the area where the tracer particles were deployed; (e) The purple stars represent the CTD stations

    图  5  2023年案例期间23.6 kg m−3等位势密度面盐度分布图

    底色为23.6 kg m−3等位势密度面处盐度值;箭头为23.6 kg m−3等位势密度面处流场;灰色等值线为气旋式中尺度涡CE的SLA等值线,间隔0.04 m,最外层等值线为−0.02 m

    Fig.  5  Salinity distribution at 23.6 kg m−3 isopotential density plane during the 2023 case period

    The shadings and arrows indicate the salinity and currents at the 23.6 kg m−3 isopotential density plane, respectively; The grey lines indicate the SLA contours of the cyclonic mesoscale eddy (CE) at a 0.04 m interval, the outermost contour is −0.02 m

    图  6  2023年9月22日120.3°E断面处0–500 m盐度(a)、盐度异常(b)及纬向流速(c)分布图

    断面位置标注在图1b

    Fig.  6  Distributions of (a) salinity, (b) salinity anomaly and (c) zonal velocity at depths of 0–500 m along the 120.3°E section on September 22, 2023

    The section location is indicated in Fig.1b

    图  7  1993–2023年气旋式中尺度涡事件典型案例

    底色为SLA;箭头为绝对地转流

    Fig.  7  Typical cases of cyclonic mesoscale eddy events from 1993 to 2023

    The shadings and arrows indicate the SLA and absolute geostrophic currents, respectively

    图  8  1993–2023年25例气旋式中尺度涡事件涡旋南北两侧区域的平均温盐曲线图

    “南海水”和“黑潮水”通过WOA气候态数据计算,计算区域标注在图1b;红色和灰色阴影代表标准差;灰色实线为等位势密度线

    Fig.  8  The average temperature and salinity curves of the north and south parts of 25 cyclonic mesoscale eddy events from 1993 to 2023

    Temperature and salinity curves of "South China Sea" and "Kuroshio" were calculated by WOA climatological data, and the calculation areas were marked in Fig.1b; The red and gray shadings represent standard deviations; Gray solid lines denote contours of potential density

    图  9  涡旋案例期间黑潮入侵南海的平均水体通量与涡旋平均VA参数的关系

    Fig.  9  The relationship between the average water flux of Kuroshio intrusion into the SCS and the average VA during cyclonic mesoscale eddy events

    图  10  气旋式中尺度涡诱发黑潮入侵南海示意图

    分叉态路径处标注通量为气旋涡诱发黑潮入侵南海的夏秋季平均水体通量增量;气旋涡北侧实线比南侧更显著,用于展现可能存在的平流强度的非对称结构

    Fig.  10  Schematic diagram of cyclonic mesoscale eddy induced Kuroshio intrusion into the SCS

    The marked flux at the leaking path is the summer-autumn averaged water flux of the cyclonic mesoscale eddy induced Kuroshio intrusion into the South China Sea; The solid line on the north side of the cyclonic eddy is more pronounced than on the south side, illustrating the potential asymmetric structure of advection strength

    表  1  船载CTD观测站位信息

    Tab.  1  Shipborne CTD observation station information

    站点名称经度/°E纬度/°N测量时间站位水深/m观测深度/m
    J2117.9521.512023年9月24日11861137
    J3117.3021.292023年9月25日370363
    MS2119.2221.122023年9月21日1993504
    MS5119.4421.022023年9月22日2974403
    MS10119.8720.842023年9月22日3425505
    下载: 导出CSV

    表  2  1993–2023年类似气旋式中尺度涡案例情况统计

    Tab.  2  Statistics of similar cyclonic mesoscale eddy cases from 1993 to 2023

    序号 气旋涡促进黑潮入侵时间段 涡心位置 持续时间/天 平均水体通量/Sv 非对称性
    1 1993-05-02~1993-05-27 119.7°E, 20.1°N 26 5.22 1.02
    2 1995-05-19~1995-06-13 120.9°E, 21.3°N 26 4.45 0.91
    3 1996-07-18~1996-08-22 119.8°E, 20.4°N 36 4.11 0.90
    4 1997-05-24~1997-06-16 119.7°E, 20.8°N 24 5.06 0.94
    5 1998-06-27~1998-07-12 119.3°E, 19.7°N 16 5.82 0.99
    6 1999-09-06~1999-10-03 119.6°E, 19.5°N 28 5.42 1.15
    7 2000-07-03~2000-08-16 119.3°E, 21.0°N 45 4.64 0.99
    8 2001-05-16~2001-06-11 119.6°E, 20.1°N 27 3.95 0.82
    9 2002-05-31~2002-07-10 119.3°E, 20.7°N 41 4.79 0.92
    10 2003-09-30~2003-10-19 119.2°E, 20.7°N 20 6.46 1.19
    11 2004-10-10~2004-11-04 119.3°E, 20.5°N 26 7.01 1.23
    12 2005-06-02~2005-06-25 119.5°E, 21.2°N 24 4.24 0.84
    13 2007-05-28~2007-06-28 119.6°E, 20.5°N 32 3.70 0.72
    14 2008-08-16~2008-08-30 119.0°E, 19.9°N 15 3.66 0.78
    15 2009-10-06~2009-10-31 119.6°E, 20.3°N 26 5.99 1.11
    16 2012-04-08~2012-05-08 119.6°E, 20.8°N 31 4.05 0.94
    17 2014-09-12~2014-10-11 120.1°E, 20.3°N 30 7.42 1.15
    18 2015-07-12~2015-08-13 119.3°E, 19.8°N 33 6.37 1.11
    19 2015-10-10~2015-11-15 119.5°E, 19.7°N 37 7.52 1.23
    20 2016-05-07~2016-06-10 119.9°E, 21.2°N 35 5.20 1.01
    21 2017-08-15~2017-09-08 120.5°E, 20.5°N 25 5.77 1.12
    22 2019-07-29~2019-08-19 120.3°E, 20.1°N 22 4.56 0.87
    23 2020-09-17~2020-10-01 120.1°E, 19.9°N 15 5.45 1.05
    24 2022-06-19~2022-07-09 120.7°E, 19.5°N 21 4.61 0.91
    25 2023-08-27~2023-10-17 119.7°E, 20.1°N 52 6.79 1.13
    下载: 导出CSV
  • [1] 王桂华, 苏纪兰, 齐义泉. 南海中尺度涡研究进展[J]. 地球科学进展, 2005, 20(8): 882−886. doi: 10.3321/j.issn:1001-8166.2005.08.009

    Wang Guihua, Su Jilan, Qi Yiquan. Advances in studying mesoscale eddies in South China Sea[J]. Advances in Earth Science, 2005, 20(8): 882−886. doi: 10.3321/j.issn:1001-8166.2005.08.009
    [2] Xu Fanghua, Oey L Y. State analysis using the Local Ensemble Transform Kalman Filter (LETKF) and the three-layer circulation structure of the Luzon Strait and the South China Sea[J]. Ocean Dynamics, 2014, 64(6): 905−923. doi: 10.1007/s10236-014-0720-y
    [3] Xue Huijie, Chai Fei, Pettigrew N, et al. Kuroshio intrusion and the circulation in the South China Sea[J]. Journal of Geophysical Research: Oceans, 2004, 109(C2): C02017.
    [4] Gan Jianping, Li Hongliang, Curchitser E N, et al. Modeling South China Sea circulation: response to seasonal forcing regimes[J]. Journal of Geophysical Research: Oceans, 2006, 111(C6): C06034.
    [5] Lu Wenfang, Yan Xiaohai, Jiang Yuwu. Winter bloom and associated upwelling northwest of the Luzon Island: a coupled physical‐biological modeling approach[J]. Journal of Geophysical Research: Oceans, 2015, 120(1): 533−546. doi: 10.1002/2014JC010218
    [6] Gan Jiangping, Liu Zhiqiang, Hui C R. A three-layer alternating spinning circulation in the South China Sea[J]. Journal of Physical Oceanography, 2016, 46(8): 2309−2315. doi: 10.1175/JPO-D-16-0044.1
    [7] Guo Lin, Xiu Peng, Chai Fei, et al. Enhanced chlorophyll concentrations induced by Kuroshio intrusion fronts in the northern South China Sea[J]. Geophysical Research Letters, 2017, 44(22): 11565−11572.
    [8] Cai Zhongya, Gan Jianping, Liu Zhiqiang, et al. Progress on the formation dynamics of the layered circulation in the South China Sea[J]. Progress in Oceanography, 2020, 181: 102246. doi: 10.1016/j.pocean.2019.102246
    [9] Qiu Bo, Lukas R. Seasonal and interannual variability of the North Equatorial Current, the Mindanao Current, and the Kuroshio along the Pacific western boundary[J]. Journal of Geophysical Research: Oceans, 1996, 101(C5): 12315−12330. doi: 10.1029/95JC03204
    [10] Lien R C, Ma B, Lee C M, et al. The Kuroshio and Luzon undercurrent east of Luzon Island[J]. Oceanography, 2015, 28(4): 54−63. doi: 10.5670/oceanog.2015.81
    [11] Hu Dunxin, Wu Lixin, Cai Wenju, et al. Pacific western boundary currents and their roles in climate[J]. Nature, 2015, 522(7556): 299−308. doi: 10.1038/nature14504
    [12] Li Li, Nowlin Jr W D, Su Jilan. Anticyclonic rings from the Kuroshio in the South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1998, 45(9): 1469−1482. doi: 10.1016/S0967-0637(98)00026-0
    [13] Qu Tangdong, Kim Y Y, Yaremchuk M, et al. Can Luzon Strait transport play a role in conveying the impact of ENSO to the South China Sea?[J]. Journal of Climate, 2004, 17(18): 3644−3657. doi: 10.1175/1520-0442(2004)017<3644:CLSTPA>2.0.CO;2
    [14] Wu C R, Chiang T L. Mesoscale eddies in the northern South China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(14/15): 1575−1588.
    [15] Xiu Peng, Chai Fei, Shi Lei, et al. A census of eddy activities in the South China Sea during 1993–2007[J]. Journal of Geophysical Research: Oceans, 2010, 115(C3): C03012.
    [16] Wu C R. Interannual modulation of the Pacific Decadal Oscillation (PDO) on the low-latitude western North Pacific[J]. Progress in Oceanography, 2013, 110: 49−58. doi: 10.1016/j.pocean.2012.12.001
    [17] 刘宇鹏, 唐丹玲, 梁文钊. 南海东北部叶绿素a浓度对台风“风泵”和黑潮共同作用的响应[J]. 海洋学报, 2020, 42(7): 16−31.

    Liu Yupeng, Tang Danling, Liang Wenzhao. Chlorophyll a concentration response to the typhoon “wind pump” and the Kuroshio in the northeastern South China Sea[J]. Haiyang Xuebao, 2020, 42(7): 16−31.
    [18] 王政委, 张媛, 杨一超, 等. 秋季南海北部溶解态锰的分布及其影响因素[J]. 海洋学报, 2024, 46(7): 120−130. doi: 10.12284/hyxb2024060

    Wang Zhengwei, Zhang Yuan, Yang Yichao, et al. Distribution and influencing factors of dissolved manganese in the northern South China Sea in autumn[J]. Haiyang Xuebao, 2024, 46(7): 120−130. doi: 10.12284/hyxb2024060
    [19] Shaw P T. The seasonal variation of the intrusion of the Philippine sea water into the South China Sea[J]. Journal of Geophysical Research: Oceans, 1991, 96(C1): 821−827. doi: 10.1029/90JC02367
    [20] Nan Feng, Xue Huijie, Chai Fei, et al. Identification of different types of Kuroshio intrusion into the South China Sea[J]. Ocean Dynamics, 2011, 61(9): 1291−1304. doi: 10.1007/s10236-011-0426-3
    [21] Holland W R. The role of mesoscale eddies in the general circulation of the ocean—numerical experiments using a wind-driven quasi-geostrophic model[J]. Journal of Physical Oceanography, 1978, 8(3): 363−392. doi: 10.1175/1520-0485(1978)008<0363:TROMEI>2.0.CO;2
    [22] Stammer D. On eddy characteristics, eddy transports, and mean flow properties[J]. Journal of Physical Oceanography, 1998, 28(4): 727−739. doi: 10.1175/1520-0485(1998)028<0727:OECETA>2.0.CO;2
    [23] Wunsch C. Where do ocean eddy heat fluxes matter?[J]. Journal of Geophysical Research: Oceans, 1999, 104(C6): 13235−13249. doi: 10.1029/1999JC900062
    [24] Wang Jia, Jin Meibing, Patrick E V, et al. Numerical simulations of the seasonal circulation patterns and thermohaline structures of Prince William Sound, Alaska[J]. Fisheries Oceanography, 2001, 10(S1): 132−148. doi: 10.1046/j.1054-6006.2001.00035.x
    [25] Morrow R, Fang Fangxin, Fieux M, et al. Anatomy of three warm-core Leeuwin Current eddies[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2003, 50(12/13): 2229−2243.
    [26] Chelton D B, Gaube P, Schlax M G, et al. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll[J]. Science, 2011, 334(6054): 328−332. doi: 10.1126/science.1208897
    [27] Wang Guihua, Su Jilan, Chu P C. Mesoscale eddies in the South China Sea observed with altimeter data[J]. Geophysical Research Letters, 2003, 30(21): 2121.
    [28] Chen Gengxin, Hou Yijun, Chu Xiaoqing. Mesoscale eddies in the South China Sea: mean properties, spatiotemporal variability, and impact on thermohaline structure[J]. Journal of Geophysical Research: Oceans, 2011, 116(C6): C06018.
    [29] Zhang Zhiwei, Tian Jiwei, Qiu Bo, et al. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea[J]. Scientific Reports, 2016, 6(1): 24349. doi: 10.1038/srep24349
    [30] Nan Feng, Xue Huijie, Xiu Peng, et al. Oceanic eddy formation and propagation southwest of Taiwan[J]. Journal of Geophysical Research, 2011, 116(C12): C12045. doi: 10.1029/2011JC007386
    [31] 林宏阳, 胡建宇, 郑全安. 吕宋海峡附近中尺度涡特征的统计分析[J]. 海洋学报, 2012, 34(1): 1−7.

    Lin Hongyang, Hu Jianyu, Zheng Quan’an. Statistical analysis of the features of meso-scale eddies near the Luzon Strait[J]. Haiyang Xuebao, 2012, 34(1): 1−7.
    [32] 程旭华, 齐义泉, 王卫强. 南海中尺度涡的季节和年际变化特征分析[J]. 热带海洋学报, 2005, 24(4): 51−59. doi: 10.3969/j.issn.1009-5470.2005.04.008

    Cheng Xuhua, Qi Yiquan, Wang Weiqiang. Seasonal and interannual variabilities of mesoscale eddies in South China Sea[J]. Journal of Tropical Oceanography, 2005, 24(4): 51−59. doi: 10.3969/j.issn.1009-5470.2005.04.008
    [33] Zhang Zhiwei, Zhao Wei, Qiu Bo, et al. Anticyclonic eddy sheddings from Kuroshio loop and the accompanying cyclonic eddy in the northeastern South China Sea[J]. Journal of Physical Oceanography, 2017, 47(6): 1243−1259. doi: 10.1175/JPO-D-16-0185.1
    [34] Sun Zhongbin, Zhang Zhiwei, Qiu Bo, et al. Three-dimensional structure and interannual variability of the Kuroshio loop current in the northeastern South China Sea[J]. Journal of Physical Oceanography, 2020, 50(9): 2437−2455. doi: 10.1175/JPO-D-20-0058.1
    [35] Wang Xiangpeng, Du Yan, Zhang Yuhong, et al. Influence of two eddy pairs on high‐salinity water intrusion in the northern South China Sea during fall‐winter 2015/2016[J]. Journal of Geophysical Research: Oceans, 2021, 126(6): e2020JC016733. doi: 10.1029/2020JC016733
    [36] Lan Jian, Feng Lin, Xu Lingling. The eddy northwest of Luzon Island in South China Sea[C]//Proceedings of The Fourteenth International Offshore and Polar Engineering Conference. Toulon: ISOPE, 2004: 770-774.
    [37] Yang Yikai, Zeng Lili, Wang Qiang. How much heat and salt are transported into the South China Sea by mesoscale eddies?[J]. Earth’s Future, 2021, 9(7): e2020EF001857. doi: 10.1029/2020EF001857
    [38] Zhao Ruixiang, Zhu Xiaohua, Zhang Chuanzheng, et al. Summer anticyclonic eddies carrying Kuroshio waters observed by a large CPIES array west of the Luzon Strait[J]. Journal of Physical Oceanography, 2023, 53(1): 341−359. doi: 10.1175/JPO-D-22-0019.1
    [39] Zhang Zhiwei, Zhang Yuchen, Qiu Bo, et al. Spatiotemporal characteristics and generation mechanisms of submesoscale currents in the northeastern South China Sea revealed by numerical simulations[J]. Journal of Geophysical Research: Oceans, 2020, 125(2): e2019JC015404. doi: 10.1029/2019JC015404
    [40] Zhang Zhiwei, Zhang Xincheng, Qiu Bo, et al. Submesoscale currents in the subtropical upper ocean observed by long-term high-resolution mooring arrays[J]. Journal of Physical Oceanography, 2021, 51(1): 187−206. doi: 10.1175/JPO-D-20-0100.1
    [41] Sun Zhongbin, Zhang Zhiwei, Zhao Wei, et al. Interannual modulation of eddy kinetic energy in the northeastern South China Sea as revealed by an eddy‐resolving OGCM[J]. Journal of Geophysical Research: Oceans, 2016, 121(5): 3190−3201.
    [42] Miao Mingfang, Zhang Zhiwei, Qiu Bo, et al. On contributions of multiscale dynamic processes to the steric height in the northeastern South China Sea as revealed by moored observations[J]. Geophysical Research Letters, 2021, 48(14): e2021GL093829. doi: 10.1029/2021GL093829
    [43] Yang Yikai, Wang Dongxiao, Wang Qiang, et al. Eddy-induced transport of saline Kuroshio water into the northern South China Sea[J]. Journal of Geophysical Research: Oceans, 2019, 124(9): 6673−6687. doi: 10.1029/2018JC014847
    [44] 徐晓华, 廖光洪, 杨成浩, 等. 应用GHSOM网络分析南海北部表层环流模态与黑潮入侵[J]. 热带海洋学报, 2013, 32(5): 29−41. doi: 10.3969/j.issn.1009-5470.2013.05.005

    Xu Xiaohua, Liao Guanghong, Yang Chenghao, et al. Variability of surfer circulation and Kuroshio intrusion in northern South China Sea using growing hierarchical self-organizing maps[J]. Journal of Tropical Oceanography, 2013, 32(5): 29−41. doi: 10.3969/j.issn.1009-5470.2013.05.005
    [45] Sun Zhongbin, Zhang Zhiwei, Huang Ruixin, et al. Novel insights into the zonal flow and transport in the Luzon Strait based on long-term mooring observations[J]. Journal of Geophysical Research: Oceans, 2023, 128(3): e2022JC019017. doi: 10.1029/2022JC019017
    [46] Zhang Zhiwei, Zhao Wei, Tian Jiwei, et al. Spatial structure and temporal variability of the zonal flow in the Luzon Strait[J]. Journal of Geophysical Research: Oceans, 2015, 120(2): 759−776. doi: 10.1002/2014JC010308
    [47] 赵伟乔, 南峰, 赵秋兰, 等. 吕宋海峡黑潮西侧3个气旋涡的三维结构与演变特征[J]. 海洋与湖沼, 2023, 54(4): 963−973. doi: 10.11693/hyhz20221100295

    Zhao Weiqiao, Nan Feng, Zhao Qiulan, et al. Three-dimensional structure and evolution of three cyclonic eddies to the west of the Kuroshio in the Luzon Strait[J]. Oceanologia et Limnologia Sinica, 2023, 54(4): 963−973. doi: 10.11693/hyhz20221100295
    [48] Lin Yanjiang, Wang Guihua. Circular asymmetry of ocean mesoscale eddy[J]. Journal of Physical Oceanography, 2024, 54(9): 2025−2040. doi: 10.1175/JPO-D-24-0032.1
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  7
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-18
  • 修回日期:  2025-02-18
  • 网络出版日期:  2025-04-11

目录

    /

    返回文章
    返回