留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

信息熵控制的海洋流线自适应步长算法研究

李忠伟 焦方涛 李永 曾伟 杨俊钢 崔伟

李忠伟,焦方涛,李永,等. 信息熵控制的海洋流线自适应步长算法研究[J]. 海洋学报,2024,46(x):1–11
引用本文: 李忠伟,焦方涛,李永,等. 信息熵控制的海洋流线自适应步长算法研究[J]. 海洋学报,2024,46(x):1–11
Li Zhongwei,Jiao Fangtao,Li Yong, et al. Research on adaptive step size algorithm of marine streamline controlled by information entropy[J]. Haiyang Xuebao,2024, 46(x):1–11
Citation: Li Zhongwei,Jiao Fangtao,Li Yong, et al. Research on adaptive step size algorithm of marine streamline controlled by information entropy[J]. Haiyang Xuebao,2024, 46(x):1–11

信息熵控制的海洋流线自适应步长算法研究

基金项目: 国家自然科学重点基金项目(62231028)。
详细信息
    作者简介:

    李忠伟(1978—),男,山西晋城人,教授,博士。主要研究方向为大数据处理与人工智能算法及其智慧应用方面的研究。E-mail:lizhongwei@upc.edu.cn

    通讯作者:

    李永(1981—),男,山东东营人,高级实验师,硕士。主要研究方向为中尺度涡方向、人工智能方向等。E-mail:20030019@upc.edu.cn

  • 中图分类号: TP391

Research on adaptive step size algorithm of marine streamline controlled by information entropy

  • 摘要: 海洋流场的流线构造与放置对于认识和理解海洋流场具有重要意义。在流线绘制过程中,积分步长的选择至关重要,能够直接影响流线放置效果。固定步长算法由于无法适应曲率不断变化的情形往往不被采用,以往自适应步长流线算法存在自由度低以及多尺度适用性差的问题。针对上述问题,本文首次将信息熵引入到步长计算中,提出了信息熵控制的海洋流线自适应步长算法。该算法首先通过计算流场信息熵得到熵场,然后依据熵值大小将流场划分为高熵区域和低熵区域,并为每个积分点赋予新的步长,使得流场可以根据变化剧烈程度自适应调整步长大小,即高熵区域(变化剧烈的区域)步长较小,低熵区域(变化平缓的区域)步长较大。实验结果表明,本文算法能够显著增加变化剧烈区域的积分点数目和流线条数,更好地绘制特征处的流线细节,同时在不会影响放置效果的前提下减少了非重要区域的积分点数目和流线条数以提高计算效率,相比以往自适应步长算法显著提高了步长调节的自由度以及尺度适用性,可以应用于不同尺度的海洋流场。
  • 图  1  不同种子点放置效果

    a.基于特征的种子点放置;b.随机种子点放置;c.均匀种子点放置

    Fig.  1  Placement effect of different seed points

    a. Places seed points based on features; b. Randomly places seed points; c. Evenly places seed points

    图  2  流线生成方式

    Fig.  2  Streamline generation method

    图  3  二维流场图及二维熵场图

    a.b.c. 二维流场图;d.e.f. 二维熵场图

    Fig.  3  Two-dimensional flow field map and two-dimensional entropy field map

    a.b.c. Two-dimensional flow field map; d.e.f. two-dimensional entropy field map

    图  4  不同固定步长下流线放置效果

    a.步长为0.2的固定步长算法;b.步长为0.3的固定步长算法

    Fig.  4  Streamline placement effects with different fixed step sizes

    a. fixed-step algorithm with a step size of 0.2; b. fixed-step algorithm with a step size of 0.3

    图  5  实验区域

    Fig.  5  Experimental area

    图  6  流场A流线放置效果对比

    a.步长为0.1的固定步长算法;b.步长为0.2的固定步长算法;c.步长为0.3的固定步长算法;d.考虑速度方向变化的自适应步长算法;e.改进后的AMFCA算法算法;f.本文算法

    Fig.  6  Comparison of flow field A streamline placement results

    a. fixed-step algorithm with a step size of 0.1; b. fixed-step algorithm with a step size of 0.2; c. fixed-step algorithm with a step size of 0.3; d. adaptive step size algorithm that takes into account changes in velocity direction; e. improved AMFCA algorithm; f. this paper's algorithm

    图  7  流场A流线图、温度图和海表面高度图

    a.流线图;b.温度图;c.海表面高度图

    Fig.  7  Streamline map, temperature map and sea surface height map of flow field A

    a. Streamline map; b. Temperature map; c. Sea surface height map

    图  8  流场B流线放置效果对比

    a.步长为0.1的固定步长算法;b.步长为0.2的固定步长算法;c.步长为0.3的固定步长算法;d.考虑速度方向变化的自适应步长算法;e.改进后的AMFCA算法算法;f.本文算法

    Fig.  8  Comparison of flow field B streamline placement results

    a. fixed-step algorithm with a step size of 0.1; b. fixed-step algorithm with a step size of 0.2; c. fixed-step algorithm with a step size of 0.3; d. adaptive step size algorithm that takes into account changes in velocity direction; e. improved AMFCA algorithm; f. this paper's algorithm

    图  9  流场B流线图、温度图和海表面高度图

    a.流线图;b.温度图;c.海表面高度图

    Fig.  9  Streamline map, temperature map and sea surface height map of flow field B

    a. Streamline map; b. Temperature map; c. Sea surface height map

    图  10  流线图相似性对比

    a.本文实验结果(流场A);b.卫星数据流线图(流场A);c.本文实验结果(流场B);d.卫星数据流线图(流场B)

    Fig.  10  Similarity comparison of streamline map

    a. Experimental results in this paper(flow field A); b. Streamline map of satellite data(flow field A); c. Experimental results in this paper(flow field B); d. Streamline map of satellite data(flow field B)

    图  11  步长空间分布图

    a.流场A部分区域步长空间分布图;b.流场B部分区域步长空间分布图

    Fig.  11  Step size spatial distribution map

    a. Step size spatial distribution map of flow field A; b. Step size spatial distribution map of flow field B

    图  12  三种自适应步长算法对比结果

    a.本文算法;b.考虑速度方向变化的自适应步长算法;c.改进后的AMFCA算法

    Fig.  12  Comparison of three adaptive step size algorithms

    a. this paper's algorithm; b. adaptive step size algorithm that takes into account changes in velocity direction; c. improved AMFCA algorithm

    表  1  流场A区域一中不同算法对比结果

    Tab.  1  Comparison results of different algorithms in region 1 of flow field A

    图像积分点数目/个流线条数/条
    图6a91707105
    图6b89604127
    图6c83025115
    图6d79807118
    图6e78832113
    图6f97789130
    下载: 导出CSV

    表  2  流场A区域二中不同算法对比结果

    Tab.  2  Comparison results of different algorithms in region 2 of flow field A

    图像积分点数目/个流线条数/条
    图6a493167
    图6b482775
    图6c464965
    图6d476183
    图6e767764
    图6f418164
    下载: 导出CSV

    表  3  流场B区域一中不同算法对比结果

    Tab.  3  Comparison results of different algorithms in region 1 of flow field B

    图像积分点数目/个流线条数/条
    图8a2883592
    图8b2372797
    图8c2004899
    图8d20627101
    图8e24352100
    图8f29817108
    下载: 导出CSV

    表  4  流场B区域二中不同算法对比结果

    Tab.  4  Comparison results of different algorithms in region 2 of flow field B

    图像积分点数目/个流线条数/条
    图8a20348153
    图8b20033146
    图8c18252142
    图8d25575141
    图8e27521143
    图8f15938137
    下载: 导出CSV

    表  5  流场A不同算法结果运行时间

    Tab.  5  Running time of different algorithm results of flow field A

    图像图6a图6b图6c图6d图6e图6f
    运行时间/秒1.7331.6251.5281.7141.7291.642
    下载: 导出CSV

    表  6  流场B不同算法结果运行时间

    Tab.  6  Running time of different algorithm results of flow field B

    图像图8a图8b图8c图8d图8e图8f
    运行时间/秒0.8650.8120.7660.8390.8580.786
    下载: 导出CSV
  • [1] 王盛波, 潘志庚. 二维流场可视化方法对比分析及综述[J]. 系统仿真学报, 2014, 26(9): 1875−1881,1888.

    Wang Shengbo, Pan Zhigeng. Comparison, analysis and review of 2D flow visualization[J]. Journal of System Simulation, 2014, 26(9): 1875−1881,1888.
    [2] 邵绪强, 程雅, 金佚钟. 表意性方法在三维流线可视化中的应用综述[J]. 图学学报, 2022, 43(5): 753−764.

    Shao Xuqiang, Cheng Ya, Jin Yizhong. A review of the application of illustrative methods in 3D streamline visualization[J]. Journal of Graphics, 2022, 43(5): 753−764.
    [3] 黄智濒, 傅广涛, 曹凌婧, 等. 基于多视图聚类算法的三维流场关键点附近的流线筛选[J]. 计算机辅助设计与图形学学报, 2022, 34(12): 1930−1942.

    Huang Zhibin, Fu Guangtao, Cao Lingjing, et al. Streamline selection around critical points of 3D flow fields by the multi-view clustering[J]. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(12): 1930−1942.
    [4] Liu Fan, Zhou Wensheng, LIU Bingxuan, et al. Flow field description and simplification based on principal component analysis downscaling and clustering algorithms[J]. Frontiers in Earth Science, 2022, 9: 804617. doi: 10.3389/feart.2021.804617
    [5] 杨光, 成诗明. 基于四面体的三维流线构造[J]. 北京航空航天大学学报, 2008, 34(9): 1061−1064.

    Yang Guang, Cheng Shiming. Tetrahedron-based constructing 3D_streamlines in visualization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(9): 1061−1064.
    [6] 鲁大营, 朱登明, 王兆其. 三维流场的流线提取算法[J]. 计算机辅助设计与图形学学报, 2013, 25(5): 666−673.

    Lu Daying, Zhu Dengming, Wang Zhaoqi. Streamline selection algorithm for three-dimensional flow fields[J]. Journal of Computer-Aided Design & Computer Graphics, 2013, 25(5): 666−673.
    [7] 季民, 陈丽, 靳奉祥, 等. 自适应步长的海洋流线构造算法[J]. 武汉大学学报•信息科学版, 2014, 39(9): 1052−1056.

    Ji Min, Chen Li, Jin Fengxiang, et al. Adaptive-step based marine fluid flow streamline constructing algorithm[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1052−1056.
    [8] 李婷, 季民, 靳奉祥, 等. 海洋流线积分自适应步长计算模型研究[J]. 海洋学报, 2018, 40(3): 95−101.

    Li Ting, Ji Min, Jin Fengxiang, et al. Research on adaptive-step calculation model of marine fluid flow numerical integration[J]. Haiyang Xuebao, 2018, 40(3): 95−101.
    [9] Xu Lijie, Lee T Y, Shen Hanwei. An information-theoretic framework for flow visualization[J]. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(6): 1216−1224. doi: 10.1109/TVCG.2010.131
    [10] 黄冬梅, 杜艳玲, 张律文. 基于信息熵种子点选取的流线可视化[J]. 计算机工程与科学, 2018, 40(3): 411−417.

    Huang Dongmei, Du Yanling, Zhang Lvwen. Two information entropy-based seeding methods for 3D flow visualization[J]. Computer Engineering and Science, 2018, 40(3): 411−417.
    [11] 刘晓帆. 基于信息熵与Clifford代数的流场特征检测[D]. 北京: 北京理工大学, 2016.

    Liu Xiaofan. Flow feature detection based on entropy and Clifford algebra[D]. Beijing: Beijing Institute of Technology, 2016.
    [12] 李梦依, 方霞, 郑红波, 等. 基于信息熵的流场定向线积分卷积算法[J]. 计算机应用, 2023, 43(4): 1233−1239.

    Li Mengyi, Fang Xia, Zheng Hongbo, et al. Oriented line integral convolution algorithm for flow field based on information entropy[J]. Journal of Computer Applications, 2023, 43(4): 1233−1239.
    [13] 张倩, 肖丽. 基于流线的流场可视化绘制方法综述[J]. 计算机科学, 2021, 48(12): 1−7. doi: 10.11896/jsjkx.201200108

    Zhang Qian, Xiao Li. Review of visualization drawing methods of flow field based on streamlines[J]. Computer Science, 2021, 48(12): 1−7. doi: 10.11896/jsjkx.201200108
    [14] Jobard B, Lefer W. Creating evenly-spaced streamlines of arbitrary density[C]//Proceedings of the Visualization in Scientific Computing’97. Vienna: Springer, 1997: 43-55.
    [15] Mebarki A, Alliez P, Devillers O. Farthest point seeding for efficient placement of streamlines[C]//VIS 05. IEEE Visualization, 2005. Minneapolis: IEEE, 2005: 479-486.
    [16] Verma V, Kao D, Pang A. A flow-guided streamline seeding strategy[C]//Proceedings Visualization 2000. VIS 2000 (Cat. No. 00CH37145). Salt Lake City: IEEE, 2000: 163-170.
    [17] 李忠伟, 徐斌, 李永, 等. 基于非结构化三角网格的海洋流场可视化[J]. 图学学报, 2022, 43(3): 486−495.

    Li Zhongwei, Xu Bin, Li Yong, et al. Visualization of ocean flow field based on unstructured triangular mesh[J]. Journal of Graphics, 2022, 43(3): 486−495.
    [18] 牛婵. 基于信息熵的流场特征提取与可视化研究[D]. 秦皇岛: 燕山大学, 2018.

    Niu Chan. Research on feature extraction of flow field based on information entropy and visualization[D]. Qinhuangdao: Yanshan University, 2018.
    [19] Du Xiaofu, Liu Huilin, Tseng H W. Adaptive method to locate seed points based on information entropy and quadtree[J]. Sensors and Materials, 2021, 33(2): 789−804. doi: 10.18494/SAM.2021.3047
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  13
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-16
  • 修回日期:  2024-10-08
  • 网络出版日期:  2024-10-31

目录

    /

    返回文章
    返回