留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晚第四纪亚洲大陆边缘海有机碳埋藏演化研究进展

张斌 于兆杰 徐兆凯 康晓莹 郭向前 杨逸飞 万世明

张斌,于兆杰,徐兆凯,等. 晚第四纪亚洲大陆边缘海有机碳埋藏演化研究进展[J]. 海洋学报,2025,47(x):1–22
引用本文: 张斌,于兆杰,徐兆凯,等. 晚第四纪亚洲大陆边缘海有机碳埋藏演化研究进展[J]. 海洋学报,2025,47(x):1–22
Zhang Bin,Yu Zhaojie,Xu Zhaokai, et al. Advances in the Study of Organic Carbon Burial Evolution in the Marginal Seas off the Asian Continent during the Late Quaternary[J]. Haiyang Xuebao,2025, 47(x):1–22
Citation: Zhang Bin,Yu Zhaojie,Xu Zhaokai, et al. Advances in the Study of Organic Carbon Burial Evolution in the Marginal Seas off the Asian Continent during the Late Quaternary[J]. Haiyang Xuebao,2025, 47(x):1–22

晚第四纪亚洲大陆边缘海有机碳埋藏演化研究进展

基金项目: 国家自然科学基金(42376055和W2421051),山东省自然科学优秀青年基金(ZR2022YQ33),国家重点研发计划(2022YFF0800503)。
详细信息
    作者简介:

    张斌(1997—),男,博士研究生,主要从事海洋沉积与古环境研究。E-mail:Zhangbin191@mails.ucas.ac.cn

    通讯作者:

    于兆杰(1988—),男,研究员,主要从事海洋沉积与古环境研究。E-mail:yuzhaojie@qdio.ac.cn

Advances in the Study of Organic Carbon Burial Evolution in the Marginal Seas off the Asian Continent during the Late Quaternary

  • 摘要: 亚洲大陆边缘海是全球最典型的“源—汇”体系之一,揭示其在第四纪气候变化背景下的有机碳埋藏过程对理解全球碳循环演化具有重要意义。本文系统综述了亚洲主要边缘海沉积物中有机碳的来源、埋藏通量变化及其驱动机制。研究结果表明,冰期各边缘海中普遍表现出有机碳含量升高、埋藏通量增加的特征,且多数区域的总有机碳(TOC)含量、有机质碳同位素组成(δ13Corg)以及TOC/总氮(TOC/TN)比值呈现出轨道时间尺度旋回特征。从成因机制来看,海平面变化调控着陆源物质入海过程与强度,季风系统影响流域侵蚀与水体结构,而洋流与缺氧区分布则共同制约着区域碳汇效率的差异性演化。典型站位的沉积记录显示,冰期陆源物质输入量的增加、最小含氧带的发展或沉积速率的升高往往有利于有机碳在海底的保存与埋藏;但在部分高纬度或者深水海域(如鄂霍茨克海和日本海),冰期时海洋生产力的下降则减弱海底有机碳的埋藏效率。此外,本文还基于δ13Corg与TOC/TN比值等指标的联合分析,进一步量化了不同来源有机质的混合特征与演化历史,并通过有机碳埋藏通量的估算结果揭示了不同海域碳汇能力对冰期—间冰期旋回的响应程度。尽管当前已经取得上述重要进展,但在端元构建、指标标准化与高分辨率时空重建等方面仍存不小的挑战。本文认为,未来应加强跨区域对比、机制耦合建模与高精度年代控制的协同研究。上述工作为理解亚洲边缘海碳汇演化过程及其在全球碳循环中的地质作用提供了基础支撑,并有助于科学地预测未来气候变化背景下海洋碳汇的演变趋势。
  • 图  1  海洋有机碳埋藏演化示意图

    Fig.  1  Schematic map of marine organic carbon burial evolution

    图  2  亚洲大陆边缘海地理概况及研究站位分布

    ODP 722站位[40];IODP U1456站位[9];3104G站位[41];IODP U1445站位[42];NGHP01-19B站位[43];E87-30[28];IODP U1452站位[44];T93站位[45];MD05-2897站位[46];NS2020-05G站位[38];BIS-187-61站位[47];MD972142站位[48];ZHS-176站位[49];GHE24L站位[50];17937站位[51];TWS-1站位[52]; MD06-3054站位[33];MD06-3052站位[8];39-A站位[53];A3站位[54];CHSC-15站位[55];W03站位[56];St10-PC站位[57];KCES-1站位[58];E09-08站位[59];LV53-23-1站位[60];MR0604-PC04站位[61];T00站位[62];PC3B站位[63];LV87-55-1站位[64];ODP 1143站位[35]

    Fig.  2  Geographical overview of the Asian continental margin sea and distribution of research stations

    Site ODP 722[40];Site IODP U1456[9];Site 3104G[41];Site IODP U1445[42];Site NGHP01-19B[43];Site E87-30[28];Site IODP U1452[44];Site T93[45];Site MD05-2897[46];Site NS2020-05G[38];Site BIS-187-61[47];Site MD972142[48];Site ZHS-176[49];Site GHE24L[50];Site 17937[51];Site TWS-1[52]; Site MD06-3054[33];Site MD06-3052[8];Site 39-A[53];Site A3[54];Site CHSC-15[55];Site W03[56];Site St10-PC[57];Site KCES-1[58];Site E09-08[59];Site LV53-23-1[60];Site MR0604-PC04[61];Site T00[62];Site PC3B[63];Site LV87-55-1[64];Site ODP 1143[35]

    图  3  亚洲大陆边缘海典型站位(a)沉积物中TOC和TN含量间相关性以及(b)有机质来源判别图

    MD06-3052站位数据[72];St10-PC站位数据[57];3104G站位数据[41];NS2020-05G站位数据[38];IODP U1456站位数据[973];NGHP01-19B站位数据[43];IODP U1452站位数据[44];TWS-1站位数据[52];CHE24L站位数据[55];MD06-3054站位数据[33];LV53-23-1站位数据[60];LV87-55-1站位数据[6]

    Fig.  3  Correlation between TOC and TN content in sediments at typical sites in the Asian continental margin Sea (a) and identification of organic matter sources (b)

    Site MD06-3052[72];Site St10-PC[57];Site 3104G[41];Site NS2020-05G[38];Site IODP U1456[973];Site NGHP01-19B[43];Site IODP U1452[44];Site TWS-1[52];Site CHE24L[55];Site MD06-3054[33];Site LV53-23-1[60];Site LV87-55-1[6]

    图  4  亚洲大陆边缘海典型站位MIS 6期以来有机碳组成指标剖面变化

    (a)阿拉伯海IODP U1456站位沉积物TOC和TN含量变化[9];(b)孟加拉湾IODP U1452站位沉积物TOC和TN含量变化[44];(c)孟加拉湾IODP U1452站位沉积物TOC/ TN比值和δ13Corg值变化[44];(d)孟加拉湾NGHP01-19B站位沉积物TOC含量和δ13Corg值变化[43];(e)南海ODP 1143站位沉积物TOC/ TN比值和δ13Corg值变化[35];(f)菲律宾海MD06-3052站位沉积物TOC/TN比值和δ13Corg值变化[72];(g)菲律宾海MD06-3052站位沉积物TOC和TN含量变化[72](h)菲律宾海St10-PC站位沉积物TOC/ TN比值和δ13Corg值变化[57];(i)菲律宾海St10-PC站位沉积物TOC和TN含量变化[57];(j)东海CHSC-15站位沉积物陆源TOC和海源TOC含量变化[55];MIS(深海氧同位素阶段)1,3和5代表间冰期阶段,MIS 2,4和6代表冰期阶段。

    Fig.  4  Changes of organic carbon component profile of typical stations in the Asian continental margin sea since MIS 6

    (a) Changes in TOC and TN contents of sediments at Site U1456 in the Arabian Sea[9]; (b) Changes in TOC and TN contents of sediments at Site U1452 in the Bay of Bengal[44]; (c) Changes in the TOC/ TN ratio and δ13Corg value of sediments at Site U1452 in the Bay of Bengal[44]; (d) Changes in sediment TOC content and δ13Corg value at Site NGHP01-19B in the Bay of Bengal[43]; (e) Changes in the TOC/ TN ratio and δ13Corg value of sediments at Site ODP 1143 station in the South China Sea[35]; (f) Changes in the TOC/TN ratio and δ13Corg value of sediments at Site MD06-3052 in the Philippine Sea[72]; (g) Changes in TOC and TN contents of sediments at Site MD06-3052 in the Philippine Sea[72]; (h) Changes in the TOC/ TN ratio and δ13Corg value of sediments at Site St10-PC in the Philippine Sea[57]; (i) Changes in TOC and TN contents of sediments at Site St10-PC in the Philippine Sea[57]; (j) Changes in the contents of terrestrial TOC and Marine TOC in sediments at Site CHSC-15 in the East China Sea[55]; MIS (Marine Isotope Stages) 1, 3 and 5 represent the interglacial stages, and MIS 2, 4 and 6 represent the glacial stages.

    图  5  亚洲大陆边缘海典型站位32 ka以来有机碳组成指标剖面变化

    (a)阿拉伯海3104G站位TOC和TN含量变化[41];(b)南海NS2020-05G站位沉积物TOC/TN比值和δ13Corg值变化[38];(c)菲律宾海MD06-3054站位沉积物TOC/TN比值和δ13Corg变化[33];(d)日本海LV53-23-1站位TOC和TN含量变化[60];(e)日本海LV53-23-1站位TOC/TN比值和δ13Corg变化[60];(f)鄂霍茨克海LV87-55-1站位TOC/TN比值和δ13Corg变化[64];(g)南海NS2020-05G和MD972142站位TOC含量变化[3848];(h)南海GHE24L站位TOC/TN比值和δ13Corg变化[50];(i)南海GHE24L站位TOC和TN含量变化[50];(j)南海TWS-1站位TOC/TN比值和δ13Corg变化[52];(k)南海TWS-1站位TOC和TN含量变化[52];(l)南海17937站位TOC含量和TOC/TN比值变化[51];MIS(深海氧同位素阶段)1,3和5代表间冰期阶段,MIS 2,4和6代表冰期阶段。

    Fig.  5  Changes of organic carbon component profile of typical stations in the Asian continental margin sea since 32 ka

    (a) Changes in TOC and TN contents at Site 3104G in the Arabian Sea[41]; (b) Changes in the TOC/TN ratio and δ13Corg value of sediments at Site NS2020-05G in the South China Sea[38]; (c) Changes in the TOC/TN ratio and δ13Corg of sediments at Site MD06-3054 in the Philippine Sea[33]; (d) Changes in TOC and TN contents at Site LV53-23-1 in the Sea of Japan[60]; (e) Changes of TOC/TN ratio and δ13Corg at Site LV53-23-1 in the Sea of Japan[60]; (f) Changes of TOC/TN ratio and δ13Corg at Site LV87-55-1 in the Sea of Okhorsk[64]; (g) Changes in TOC content at Sites NS2020-05G and MD972142 in the South China Sea[38, 48]; (h) Changes of TOC/TN ratio and δ13Corg at Site GHE24L in the South China Sea[50]; (i) Changes in TOC and TN contents at Site GHE24L in the South China Sea[50]; (j) Changes of TOC/TN ratio and δ13Corg at Site TWS-1 in the South China Sea[52]; (k) Changes in TOC and TN contents at Site TWS-1 in the South China Sea[52]; (1) Changes in TOC content and TOC/TN ratio at Site 17937 in the South China Sea[51]; MIS (Marine Isotope Stages) 1, 3 and 5 represent the interglacial stages, and MIS 2, 4 and 6 represent the glacial stages.

    图  6  亚洲大陆边缘海典型站位不同来源有机碳贡献变化

    (a)阿拉伯海U1456站位陆源和海源有机碳贡献比例变化[73];(b)孟加拉湾U1452站位陆源和海源有机碳贡献比例变化[44];(c)孟加拉湾NGHP01-19B站位陆源和海源有机碳贡献比例变化[43];(d)菲律宾海MD06-3502站位陆源和海源有机碳贡献比例变化[72];(e)菲律宾海St10-PC站位陆源和海源有机碳贡献比例变化[57];(f)东海CHSC-15站位陆源和海源有机碳贡献比例变化[55];(g)南海NS2020-05G站位陆源和海源有机碳贡献比例变化[38];(h)南海TWS-1站位陆源和海源有机碳贡献比例变化[52];(i)南海17937站位陆源和海源有机碳贡献比例变化[51];(j)菲律宾海MD06-3054站位陆源和海源有机碳贡献比例变化[33];(k)日本海LV52-23-1站位陆源和海源有机碳贡献比例变化[60];(l)鄂霍茨克海LV87-55-1站位陆源和海源有机碳贡献比例变化[64];MIS(深海氧同位素阶段)1,3和5代表间冰期阶段,MIS 2,4和6代表冰期阶段。

    Fig.  6  Changes of organic carbon contributions from different sources at typical stations in the Asian continental margin sea

    (a) Changes in the contribution ratios of land-based and Marine organic carbon at Site IODP U1456 in the Arabian Sea[73]; (b) Changes in the contribution ratios of land-based and sea-based organic carbon at Site IODP U1452 in the Bay of Bengal[44]; (c) Changes in the contribution ratios of land-based and Marine organic carbon at Site NGHP01-19B in the Bay of Bengal[43]; (d) Changes in the contribution ratio of organic carbon from land and sea sources at Site MD06-3502 in the Philippine Sea[72]; (e) Changes in the contribution ratios of land-based and Marine organic carbon at Site St10-PC in the Philippine Sea[57]; (f) Changes in the contribution ratios of land-based and Marine organic carbon at Site CHSC-15 in the East China Sea[55]; (g) Changes in the contribution ratio of land-based and Marine organic carbon at Site NS2020-05G in the South China Sea[38]; (h) Changes in the contribution ratios of land-based and Marine organic carbon at Site TWS-1 in the South China Sea[52]; (i) Changes in the contribution ratios of land-based and Marine organic carbon at Site 17937 in the South China Sea[51]; (j) Changes in the contribution ratios of land-based and Marine organic carbon at Site MD06-3054 in the Philippine Sea[33]; (k) Changes in the contribution ratios of land-based and Marine organic carbon at Site LV52-23-1 in the Sea of Japan[60] (1) Changes in the contribution ratio of organic carbon from land and sea sources at Site LV87-55-1 in the Sea of Okhotsk[64] MIS (Marine Isotope Stages) 1, 3 and 5 represent the interglacial stages, and MIS 2, 4 and 6 represent the glacial stages.

    图  7  亚洲大陆边缘海有机碳埋藏演化模式图

    Fig.  7  The evolution model of organic carbon burial in the marginal seas of the Asian continent

    表  1  亚洲大陆边缘海典型站位有机碳研究进展

    Tab.  1  Research progress of organic carbon at typical stations in the Asian continental margin sea

    区域 站位号 站位地理位置 站位水深/
    m
    年代框架模式 时间尺度/
    ka
    研究指标 有机碳演化特征 有机碳指标变化的
    潜在影响因素
    参考文献
    鄂霍茨克海 MR0604-PC04 鄂霍茨克海南部 1215 磁化率及颜色反射率与氧同位素地层调谐 0-28 TOC,TOC/TN,δ15N,生物标志物 全新世含量高,末次冰期
    含量低
    水体分层,海冰融水,
    反硝化作用
    [61]
    T00 鄂霍茨克海中部 975 放射虫特征种含量与氧同位地层调谐 0-450 TOC,TOC/TN 冰期含量低,间冰期含量高 海冰变化,陆源输入,水体分层,海平面 [62]
    PC3B 鄂霍茨克海中部 1048 氧同位素地层调谐 0-500 TOC,TN,TOC/TN 冰期含量低,间冰期含量高 海冰变化,水体混合 [63]
    LV87-55-1 鄂霍茨克海北部 1400 有孔虫AMS 14C 测年、火山灰年代学 0-30 TOC,TN,TOC/TN,δ13C,δ15N,有机碳来源 早全新世含量高,末次冰期
    含量低
    冻土融化,海平面,河流输入 [64]
    日本海 LV53-23-1 日本海中部 1282 有孔虫AMS 14C 测年、火山灰年代学 0-37 TOC,TN,TOC/TN,δ13C,δ15N,有机碳来源 冰期陆源有机碳相对贡献更高 对马暖流强弱,营养盐及生产力变化,水体含氧量 [60]
    KCES-1 日本海南部 1463.8 有孔虫AMS 14C 测年、火山灰年代学 0-50 TOC MIS1期TOC含量高 / [58]
    E09-08 日本海南部 1259 有孔虫AMS 14C 测年、氧同位素地层调谐 0-500 TOC,TOC/TN,δ13C,δ15N,生物标志物 MIS 2,10,12期δ13C, δ15N低,TOC/TN高 海平面变化,陆源有机质输入变化,反硝化作用 [59]
    黄海 W03 黄海北部 54.5 有孔虫AMS 14C 测年 0-10 TOC,TN,TOC/TN,δ13C,生物标志物,有机碳来源 全新世早期TOC含量逐渐增加,中晚期保持平稳 ENSO变率,东亚冬季风,沿岸洋流,陆源输入 [56]
    26个表层站位 黄海南部 / / / TOC,TN,TOC/TN,δ13C,有机碳来源贡献 / 陆源输入、生产力、洋流 [74]
    东海 A3 东海西部 25 210Pb和贝壳AMS 14C 测年 0-0.7 TOC,TOC/TN,,δ13C,生物标志物 1950年前长江河口沉积陆源有机碳低1950年后升高 ENSO变率,东亚冬季风,大河上游降水状况 [54]
    CSHC-15 东海东部 940 有孔虫AMS 14C 测年、氧同位素地层调谐 0-200 TOC, TN, TOC/TN, δ13C, δ15N,有机碳来源 冰期陆源有机质贡献增加间冰期海源贡献增加 海平,黑潮,东亚季风,生产力,NPIW等 [55]
    39-A 东海南部 45 有孔虫AMS 14C 测年 0-3 TOC,TN,TOC/TN,δ13C,生物标志物 1400yr以来,陆源TOC含量与埋藏效率增加 东亚冬季风强度,沿岸流强度 [53]
    南海 SH08 南海北部 1327 有孔虫AMS 14C 测年 0-26 TOC,TN,TOC/TN,δ13C,生物标志物,有机碳来源 LGM和冰消期TOC含量较高,全新世则较低 海平面,东亚冬季风强度 [75]
    TWS-1 南海北部 1186 有孔虫AMS 14C 测年 0-23 TOC,TN,TOC/TN,δ13C,有机碳来源,有机碳MAR 陆源有机碳通量在末次冰消期早期和中全新世呈峰值 海平面,东亚冬季风强度 [52]
    GHE24L 南海北部 1387 有孔虫AMS 14C 测年 0-21 TOC,TN,TOC/TN,δ13C,有机碳MAR LGM阶段TOC含量和MAR较高,全新世较低 海平面,海洋生产力,黑潮强度 [50]
    ZHS-176 南海北部 1383 有孔虫AMS 14C 测年、氧同位素地层调谐 0-25 TOC,δ13C,有机碳来源 MIS2期TOC含量较高,全新世有机碳含量较低 海平面,东亚冬季风强度,上升流强度,生产力 [49]
    BIS-187-61 南海西南部 2226 氧同位素地层调谐 0-140 TOC,TOC/TN,有机碳MAR TOC含量和物质堆积速率在MIS 2,4和6期增加 海平面,东亚冬季风强度,上升流强度,生产力 [47]
    MD972142 南海东部 1557 氧同位素地层调谐 0-900 TOC,生物标志物 冰期TOC含量较高, 间冰期TOC含量较低 海平面,东亚冬季风强度,
    生产力
    [48]
    NS2020-05G 南海南部 1737 有孔虫AMS 14C 测年 0-30 TOC,TOC/TN,δ13C,生物标志物 LGM期间陆源和海源有机碳保存效率较高作为碳汇 沉积速率,底层水氧化还原
    状况
    [38]
    MD05-
    2897
    南海南部 1658 有孔虫AMS 14C 测年、氧同位素地层调谐 0-500 TOC,有机碳物质堆积速率 TOC含量和堆积速率在间冰期较高,冰期略低 东亚夏季风,生产力 [46]
    菲律
    宾海
    MD06-
    3502
    菲律宾海西部 732 有孔虫AMS 14C 测年、氧同位素地层调谐 0-156 TOC,TN,TOC/TN,δ13C,有机碳来源,有机碳MAR TOC含量和物质堆积速率呈现冰期高而间冰期低 海平面,陆架松散沉积物的物理剥蚀过程 [72]
    MD06-3504 菲律宾海西部 2057 有孔虫AMS 14C 测年 0-28 TOC,TN,TOC/TN,δ13C 末次冰期有机碳以陆源为主,全新世以海源为主 海平面 [33]
    St10-PC 菲律宾海北部 2670 有孔虫AMS 14C 测年、氧同位素地层调谐 0-380 TOC,TN,TOC/TN,δ13C,有机碳MAR TOC含量和MAR在冰期增加 洋流活动,底层水氧化还原
    状况,
    [57]
    泰国湾 T93 泰国湾西南部 59 有孔虫AMS 14C 测年 0-14 TOC,TN,TOC/TN,δ13C,有机碳来源,有机碳MAR 末次冰消期以来随着海平面上升陆源有机碳占比下降 海平面,东亚夏季风 [45]
    孟加
    拉湾
    NGHP01-19B 孟加拉湾北部 1422 有孔虫AMS 14C 测年、氧同位素地层调谐 0-110 TOC,TN,TOC/TN,δ13C,δ15N,有机碳MAR TOC含量呈现冰期高而间冰期低的特征 陆源输入,水体分层,印度
    季风
    [43]
    U1452 孟加拉湾南部 3671 氧同位素地层调谐 0-190 TOC,TN,TOC/TN,δ13C TOC含量呈现冰期高而间冰期低的特征 陆源输入,印度季风 [44]
    U1445 孟加拉湾北部 2513 磁性地层学和生物地层学 0-2300 TOC,TN,,TOC/TN,δ13C 2.3Ma以来有机碳贡献从海源向陆源转变 陆源输入,印度季风 [42]
    阿拉
    伯海
    U1456 阿拉伯海东部 3640 磁性地层学和生物地层学 0-700 TOC,TN,TOC/TN,δ13C,有机碳来源,有机碳MAR TOC含量和有机碳MAR呈现冰期高而间冰期特征 陆源输入,喜马拉雅-青藏高原高地物理剥蚀 [73]
    3104G 阿拉伯海东部 1680 有孔虫AMS 14C 测年 0-40 TOC,TN,δ13C,有机碳MAR LGM有机碳MAR显著增加 沉积速率 [41]
    722 阿拉伯海西部 2027.8 磁性地层学和生物地层学 0-700 有机碳MAR 冰期有机碳MAR显著增加 陆源输入 [40]
    下载: 导出CSV
  • [1] Lüthi D, Le Floch M, Bereiter B, et al. High-resolution carbon dioxide concentration record 650, 000-800, 000 years before present[J]. Nature, 2008, 453(7193): 379−382.
    [2] Sigman D M, Hain M P, Haug G H. The polar ocean and glacial cycles in atmospheric CO2 concentration[J]. Nature, 2010, 466(7302): 47−55.
    [3] Martin J H. Glacial-interglacial CO2 change: the iron hypothesis[J]. Paleoceanography, 1990, 5(1): 1−13.
    [4] Bradtmiller L I, Anderson R F, Sachs J P, et al. A deeper respired carbon pool in the glacial equatorial Pacific Ocean[J]. Earth and Planetary Science Letters, 2010, 299(3/4): 417−425.
    [5] Jaccard S L, Galbraith E D, Sigman D M, et al. Subarctic Pacific evidence for a glacial deepening of the oceanic respired carbon pool[J]. Earth and Planetary Science Letters, 2009, 277(1/2): 156−165.
    [6] Opdyke B N, Walker J C G. Return of the coral reef hypothesis: basin to shelf partitioning of CaCO3 and its effect on atmospheric CO2[J]. Geology, 1992, 20(8): 733−736.
    [7] Wan Shiming, Clift P D, Zhao Debo, et al. Enhanced silicate weathering of tropical shelf sediments exposed during glacial lowstands: a sink for atmospheric CO2[J]. Geochimica et Cosmochimica Acta, 2017, 200: 123−144.
    [8] Xu Zhaokai, Wan Shiming, Colin C, et al. Enhanced terrigenous organic matter input and productivity on the western margin of the Western Pacific Warm Pool during the Quaternary sea-level lowstands: forcing mechanisms and implications for the global carbon cycle[J]. Quaternary Science Reviews, 2020, 232: 106211.
    [9] Xu Zhaokai, Wan Shiming, Colin C, et al. Enhancements of Himalayan and Tibetan erosion and the produced organic carbon burial in distal tropical marginal seas during the Quaternary glacial periods: an integration of sedimentary records[J]. Journal of Geophysical Research: Earth Surface, 2021, 126(3): e2020JF005828.
    [10] Hedges J I, Keil R G, Benner R. What happens to terrestrial organic matter in the ocean?[J]. Organic Geochemistry, 1997, 27(5/6): 195−212.
    [11] Calvert S, Pedersen T F, Naidu P D, et al. On the organic carbon maximum on the continental slope of the eastern Arabian Sea[J]. Journal of Marine Research, 1995, 53(2): 269−296.
    [12] Berner R A. Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over phanerozoic time[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1989, 75(1/2): 97−122.
    [13] Hedges J I, Keil R G. Sedimentary organic matter preservation: an assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49(2/3): 81−115.
    [14] Burdige D J. Burial of terrestrial organic matter in marine sediments: a re-assessment[J]. Global Biogeochemical Cycles, 2005, 19(4): GB4011.
    [15] Pedersen T F. Increased productivity in the eastern equatorial Pacific during the last glacial maximum (19, 000 to 14, 000 yr B. P)[J]. Geology, 1983, 11(1): 16−19.
    [16] Lyle M. Climatically forced organic carbon burial in equatorial Atlantic and Pacific Oceans[J]. Nature, 1988, 335(6190): 529−532.
    [17] Bradtmiller L I, Anderson R F, Sachs J P, et al. A deeper respired carbon pool in the glacial equatorial Pacific Ocean[J]. Earth and Planetary Science Letters, 2010, 299(3/4): 417−425. (查阅网上资料, 本条文献与第4条文献重复, 请确认)
    [18] Cartapanis O, Bianchi D, Jaccard S L, et al. Global pulses of organic carbon burial in deep-sea sediments during glacial maxima[J]. Nature Communications, 2016, 7(1): 10796.
    [19] Galy V, Peucker-Ehrenbrink B, Eglinton T. Global carbon export from the terrestrial biosphere controlled by erosion[J]. Nature, 2015, 521(7551): 204−207.
    [20] LaRowe D E, Arndt S, Bradley J A, et al. The fate of organic carbon in marine sediments-New insights from recent data and analysis[J]. Earth-Science Reviews, 2020, 204: 103146.
    [21] Dai Minhan, Su Jianzhong, Zhao Yangyang, et al. Carbon fluxes in the coastal ocean: synthesis, boundary processes, and future trends[J]. Annual Review of Earth and Planetary Sciences, 2022, 50(1): 593−626.
    [22] Middelburg J J, Vlug T, Jaco F, et al. Organic matter mineralization in marine systems[J]. Global and Planetary Change, 1993, 8(1/2): 47−58.
    [23] Ingall E D, Van Cappellen P. Relation between sedimentation rate and burial of organic phosphorus and organic carbon in marine sediments[J]. Geochimica et Cosmochimica Acta, 1990, 54(2): 373−386.
    [24] Betts J N, Holland H D. The oxygen content of ocean bottom waters, the burial efficiency of organic carbon, and the regulation of atmospheric oxygen[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1991, 97(1/2): 5−18.
    [25] France-Lanord C, Derry L A. Organic carbon burial forcing of the carbon cycle from Himalayan erosion[J]. Nature, 1997, 390(6655): 65−67.
    [26] Galy V, France-Lanord C, Beyssac O, et al. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system[J]. Nature, 2007, 450(7168): 407−410.
    [27] Yin Shaoru, Hernández‐Molina F J, Fan Weijia, et al. Efficient organic carbon burial by bottom currents in the ocean: a potential role in climate modulation[J]. Geophysical Research Letters, 2024, 51(14): e2024GL109444.
    [28] Khan M H R, Liu Jianguo, Huang Yun, et al. The influence of grain size and mineralogical composition of terrestrial material inputs on organic carbon sequestration in the Bengal Fan since the last deglaciation[J]. Global and Planetary Change, 2025, 248: 104773.
    [29] Leithold E L, Blair N E, Wegmann K W. Source-to-sink sedimentary systems and global carbon burial: a river runs through it[J]. Earth-Science Reviews, 2016, 153: 30−42.
    [30] Hall I R, McCave I N. Glacial-interglacial variation in organic carbon burial on the slope of the N. W. European Continental Margin (48°–50° N)[J]. Progress in Oceanography, 1998, 42(1/4): 37−60.
    [31] 石学法, 乔淑卿, 杨守业, 等. 亚洲大陆边缘沉积学研究进展(2011-2020)[J]. 矿物岩石地球化学通报, 2021, 40(2): 319−336.

    Shi Xuefa, Qiao Shuqing, Yang Shouye, et al. Progress in sedimentology research of the Asian continental margin(2011-2020)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(2): 319−336.
    [32] 石学法, 刘焱光, 乔淑卿, 等. 亚洲大陆边缘“源–汇”过程研究: 沉积纪录与控制机理[J]. 吉林大学学报: 地球科学版, 2015, 45(S1): 1512−23. (查阅网上资料, 不确定页码是否正确, 请确认)

    Shi Xuefa, Liu Yanguang, Qiao Shuqing, et al. Research on the “source-sink” process at the Asian Continental Margin: sedimentary records and control mechanisms[J]. Journal of Jilin University: Earth Science Edition, 2015, 45(S1): 1512−23. (查阅网上资料, 未找到对应英文翻译信息, 请确认)
    [33] Xiong Zhifang, Li Tiegang, Chang Fengming, et al. Rapid precipitation changes in the tropical West Pacific linked to North Atlantic climate forcing during the last deglaciation[J]. Quaternary Science Reviews, 2018, 197: 288−306.
    [34] 万世明, 秦琳, 杨守业, 等. 南海冰期陆架风化与碳循环[J]. 第四纪研究, 2020, 40(6): 1531−1549 doi: 10.11928/j.issn.1001-7410.2020.06.14

    Wan Shiming, Qin Lin, Yang Shouye, et al. South China Sea shelf weathering in glacial periods and its link to carbon cycle[J]. Quaternary Sciences, 2020, 40(6): 1531−1549. doi: 10.11928/j.issn.1001-7410.2020.06.14
    [35] 王博士, 赵泉鸿, 翦知湣. 南海南部中上新世以来沉积有机碳与古生产力变化[J]. 海洋地质与第四纪地质, 2005, 25(2): 73−79.

    Wang Boshi, Zhao Quanghong, Jian Zhimin. Changes of organic carbon and paleoproductivity in the southern South China Sea since middle pliocene[J]. Marine Geology & Quaternary Geology, 2005, 25(2): 73−79.
    [36] 张明宇, 常鑫, 胡利民, 等. 东海内陆架有机碳的源—汇过程及其沉积记录[J]. 沉积学报, 2021, 39(3): 593−609.

    Zhang Mingyu, Chang Xin, Hu Limin, et al. Source-to-sink process of organic carbon on the inner shelf of the East China Sea and its sedimentary records[J]. Acta Sedimentologica Sinica, 2021, 39(3): 593−609.
    [37] Clift P D, Jonell T N, Du Yifan, et al. The impact of Himalayan-Tibetan erosion on silicate weathering and organic carbon burial[J]. Chemical Geology, 2024, 656: 122106.
    [38] Chen Fen, Mao Shengyi, Zhou Wanqiu, et al. Organic matter burial and degradation in the southern South China Sea since the last glaciation[J]. Global and Planetary Change, 2025, 248: 104771.
    [39] 徐维海, 钟秋燕, 颜文, 等. 中国边缘海沉积物有机碳分布及其储碳潜力研究进展[J/OL]. 热带海洋学报, http://kns.cnki.net/kcms/detail/44.1500.P.20250305.1635.002.html, 2025-03-06.

    Xu Weihai, Zhong Qiuyan, Yan Wen, et al. Advances on organic carbon distribution and storage potential of sediments in the Chinese marginal sea[J/OL]. Journal of Tropical Oceanography, http://kns.cnki.net/kcms/detail/44.1500.P.20250305.1635.002.html, 2025-03-06.(查阅网上资料,未找到引用日期信息,请确认补充)
    [40] Clemens S C, Murray D W, Prell W L. Nonstationary phase of the Plio-Pleistocene Asian monsoon[J]. Science, 1996, 274(5289): 943−948.
    [41] Agnihotri R, Sarin M M, Somayajulu B L K, et al. Late-Quaternary biogenic productivity and organic carbon deposition in the eastern Arabian Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 197(1/2): 43−60.
    [42] Lee J, Kim S H, Khim B K. A paleoproductivity shift in the northwestern Bay of Bengal (IODP Site U1445) across the Mid-Pleistocene transition in response to weakening of the Indian summer monsoon[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 560: 110018.
    [43] Phillips D L, Gregg J W. Source partitioning using stable isotopes: coping with too many sources[J]. Oecologia, 2003, 136(2): 261−269.
    [44] Weber M E, Lantzsch H, Dekens P, et al. 200, 000 years of monsoonal history recorded on the lower Bengal Fan-strong response to insolation forcing[J]. Global and Planetary Change, 2018, 166: 107−119.
    [45] Bai Yazhi, Hu Limin, Jin Lina, et al. Burial records of terrestrial organic carbon controlled by sea-level and monsoon variability in the Gulf of Thailand since the last deglaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2025, 667: 112863.
    [46] 梅西, 张训华, 郑洪波, 等. 南海南部50万年以来碳酸钙和有机碳记录及其揭示的东亚夏季风演化[J]. 地球科学——中国地质大学学报, 2010, 35(1): 22−30.

    Mei Xi, Zhang Xunhua, Zheng Hongbo, et al. 500000-year records of carbonate and organic carbon from the Southern South China Sea and implication for East Asian Summer monsoon evolution[J]. Earth Sciences - Journal of China University of Geosciences, 2010, 35(1): 22−30.
    [47] 邹杨浩, 冉莉华, Wiesner M G, 等. 140kaBP以来南海西南部上升流影响区沉积记录及其古海洋环境变化[J]. 海洋地质与第四纪地质, 2019, 39(2): 123−133.

    Zhou Yanghao, Ran Lihua, Wiesner M G, et al. Sediment records and their paleoceanographic implications in the upwelling area of the southwestern South China Sea during the last 140, 000 years[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 123−133.
    [48] Shiau L J, Yu Paisen, Wei K Y, et al. Sea surface temperature, productivity, and terrestrial flux variations of the southeastern South China Sea over the past 800000 years (IMAGESMD972142)[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2008, 19(4): 363.
    [49] 葛倩, 孟宪伟, 初凤友, 等. 南海北部ZHS-176孔古海洋学记录: 氧同位素和有机碳[J]. 海洋地质与第四纪地质, 2012, 32(5): 73−80.

    Ge Qian, Meng Xianwei, Chu Fengyou, et al. Paleoceanographic records of core ZHS-176 from the northern South China Sea: oxygen isotope and organic carbon[J]. Marine Geology & Quaternary Geology, 2012, 32(5): 73−80.
    [50] 雷艳, 胡建芳, 向荣, 等. 末次盛冰期以来南海北部神狐海域沉积有机质的组成特征及其古气候/环境意义[J]. 海洋学报, 2017, 39(11): 75−84. doi: 10.3969/j.issn.0253-4193.2017.11.007

    Lei Yan, Hu Jianfang, Xiang Rong, et al. Composition of sedimentary organic matter in Shenhu, northern South China Sea since the last Glacial Maximum and its implication for paleoclimate[J]. Haiyang Xuebao, 2017, 39(11): 75−84. doi: 10.3969/j.issn.0253-4193.2017.11.007
    [51] 李丽, 王慧, 罗布次仁, 等. 南海北部4万年以来有机碳和碳酸盐含量变化及古海洋学意义[J]. 海洋地质与第四纪地质, 2008, 28(6): 79−85.

    Li Li, Wang Hui, Luo Buciren, et al. The characterizations and paleoceanographic significances of organic and inorganic carbon in northern South China Sea during past 40 ka[J]. Marine Geology & Quaternary Geology, 2008, 28(6): 79−85.
    [52] 秦琳, 万世明. 末次冰期以来南海东北部陆源有机碳埋藏通量演变: 海平面和季风驱动[J]. 海洋与湖沼, 2020, 51(4): 875−888.

    Qin Lin , Wan Shiming. Sea level change and monsoon dominated evolution of terrigenous organic carbon burial flux in the northeastern South China Sea since the last glacial[J]. Oceanologia et Limnologia Sinica, 2020, 51(4): 875−888.
    [53] Liu Shuai, Li Dawei, Xiang Rong, et al. Intensification of the East Asian winter monsoon resulted in greater preservation of terrestrial organic carbon on the inner shelf of the East China Sea since the last 1400 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 615: 111454.
    [54] Yang Yi, Gao Chao, Yamoah K A, et al. Contributions of the Yangtze River and Yellow River to terrestrial organic carbon deposition in the Yangtze River Estuary during the last 700 years[J]. Marine Chemistry, 2023, 255: 104298.
    [55] Dou Yanguang, Sun Chenghui, Yang Shouye, et al. Molybdenum isotopic evidence for linked changes in North Pacific Intermediate Water and subtropical Northwest Pacific redox conditions over the last 200 k. y[J]. Global and Planetary Change, 2025, 244: 104637.
    [56] Zhang Yang, Wang Houjie, Hu Limin, et al. Different pacemakers of marine organic carbon burial in the North Yellow Sea from the early to late Holocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2024, 652: 112408.
    [57] Zhang Yuying, Hu Limin, Wu Yonghua, et al. Glacial-interglacial variations in organic carbon burial in the northwest pacific ocean over the last 380 kyr and its environmental implications[J]. Frontiers in Earth Science, 2022, 10: 886120.
    [58] 邹建军, 石学法, 刘焱光, 等. 末次冰期以来日本海陆源沉积的地球化学记录及其对海平面和气候变化的响应[J]. 海洋地质与第四纪地质, 2010, 30(2): 75−86.

    Zou Jianjun, Shi Xuefa, Liu Yanguang, et al. Geochemical record of terrigenous sediments from the sea of Japan since last glacial and its response to sea level and climate change[J]. Marine Geology & Quaternary Geology, 2010, 30(2): 75−86.
    [59] Hyun S, Kim J K, Kang J, et al. Multi-proxy stratigraphy and paleoceanographic variations in sediment from the Korea Plateau, East Sea (Japan Sea), over the last 500 kyr[J]. Ocean Science Journal, 2022, 57(3): 420−435.
    [60] 邹建军, 宗娴, 朱爱美, 等. 37ka以来日本海沉积物有机质碳和氮稳定同位素变化及其古海洋学意义[J]. 地学前缘, 2022, 29(4): 123−135.

    Zou Jianjun, Zong Xian, Zhu Aimei, et al. Stable carbon and nitrogen isotope variations in sedimentary organic matter in the Sea of Japan since 37 ka: paleoceanographic implications[J]. Earth Science Frontiers, 2022, 29(4): 123−135.
    [61] Okazaki Y, Kimoto K, Asahi H, et al. Glacial to deglacial ventilation and productivity changes in the southern Okhotsk Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 395: 53−66.
    [62] 孙烨忱, 王汝建, 陈建芳, 等. 鄂霍次克海南部晚第四纪的古海洋学记录[J]. 海洋地质与第四纪地质, 2009, 29(2): 83−90.

    Shen Yechen, Wang Rujian, Chen Jianfang, et al. Late quaternary paleoceanographic records in the Southern Okhotsk Sea[J]. Marine Geology & Quaternary Geology, 2009, 29(2): 83−90.
    [63] Iwasaki S, Takahashi K, Maesawa T, et al. Paleoceanography of the last 500 kyrs in the central Okhotsk Sea based on geochemistry[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2012, 61−64: 50−62.
    [64] 王庆超. 30ka以来鄂霍次克海中部沉积环境演化[D]. 青岛: 自然资源部第一海洋研究所, 2024.

    Wang Qingchao. Evolution of the sedimentary environment in the central Sea of Okhotsk since 30ka[D]. Qingdao: First Institute of Oceanography, Ministry of Natural Resources, 2024.
    [65] Lamb A L, Wilson G P, Leng M J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material[J]. Earth-Science Reviews, 2006, 75(1/4): 29−57.
    [66] Meyers P A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes[J]. Organic Geochemistry, 1997, 27(5/6): 213−250.
    [67] Meyers P A. Preservation of elemental and isotopic source identification of sedimentary organic matter[J]. Chemical Geology, 1994, 114(3/4): 289−302.
    [68] Khim B K, Lee J, Ha S, et al. Variations in δ13C values of sedimentary organic matter since late Miocene time in the Indus Fan (IODP Site 1457) of the eastern Arabian Sea[J]. Geological Magazine, 2020, 157(6): 1012−1021.
    [69] Zhou Bin, Zheng Hongbo, Yang Wenguang, et al. Climate and vegetation variations since the LGM recorded by biomarkers from a sediment core in the northern South China Sea[J]. Journal of Quaternary Science, 2012, 27(9): 948−955.
    [70] Zhang Hailong, Xing Lei, Zhao Meixun. Origins of terrestrial organic matter in surface sediments of the East China Sea shelf[J]. Journal of Ocean University of China, 2017, 16(5): 793−802.
    [71] Jing Yunge, Zhang Taoliang, Zhu Ben, et al. Organic carbon burial and their implication on sea surface primary productivity in the middle Okinawa Trough over the past 200 ka[J]. Frontiers in Marine Science, 2024, 11: 1331940.
    [72] 徐兆凯, 张骞月, 常凤鸣. 156ka以来西菲律宾海陆坡沉积物的定量源-汇过程及其碳循环效应[J]. 海洋地质前沿, 2022, 38(11): 18−27.

    Xu Zhaokai, Zhang Qianyue, Chang Fengming. Quantitative source-to-sink processes and carbon cycling effect of sediment on the continental slope of the western Philippine Sea since 156 ka[J]. Marine Geology Frontiers, 2022, 38(11): 18−27.
    [73] Zhang Bin, Xu Zhaokai, Yu Zhaojie, et al. Increase of organic carbon burial promoted the glacial decrease of atmospheric CO2: a case study from the Bengal-Indus fans[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2025, 671: 112986.
    [74] Chen Yan, Hu Chun, Yang Guipeng, et al. Source, distribution and degradation of sedimentary organic matter in the South Yellow Sea and East China Sea[J]. Estuarine, Coastal and Shelf Science, 2021, 255: 107372.
    [75] Wang Qingchao, Zou Jianjun, Feng Xuguang, et al. Spatial variations in sedimentary fluxes and paleoenvironment in the Sea of Okhotsk over the last 30 kyr[J]. Quaternary Science Reviews, 2025, 355: 109251.
    [76] Beal L M, Hormann V, Lumpkin R, et al. The response of the surface circulation of the Arabian Sea to monsoonal forcing[J]. Journal of Physical Oceanography, 2013, 43(9): 2008−2022.
    [77] Rostek F, Bard E, Beaufort L U C, et al. Sea surface temperature and productivity records for the past 240 kyr in the Arabian Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1997, 44(6/7): 1461−1480.
    [78] Yu Zhaojie, Colin C, Wan Shiming, et al. Sea level-controlled sediment transport to the eastern Arabian Sea over the past 600 kyr: clay minerals and Sr-Nd isotopic evidence from IODP site U1457[J]. Quaternary Science Reviews, 2019, 205: 22−34.
    [79] Clift P D, Shimizu N, Layne G D, et al. Development of the Indus Fan and its significance for the erosional history of the Western Himalaya and Karakoram[J]. Geological Society of America Bulletin, 2001, 113(8): 1039−1051.
    [80] Reichart G J, Lourens L J, Zachariasse W J. Temporal variability in the northern Arabian Sea oxygen minimum zone (OMZ) during the last 225, 000 years[J]. Paleoceanography, 1998, 13(6): 607−621.
    [81] Rixen T, Cowie G, Gaye B, et al. Reviews and syntheses: present, past, and future of the oxygen minimum zone in the northern Indian Ocean[J]. Biogeosciences, 2020, 17(23): 6051−6080.
    [82] Rasiq K T, Kurian S, Karapurkar S G, et al. Sedimentary pigments and nature of organic matter within the oxygen minimum zone (OMZ) of the Eastern Arabian Sea (Indian margin)[J]. Estuarine, Coastal and Shelf Science, 2016, 176: 91−101.
    [83] Kim J E, Khim B K, Ikehara M, et al. Orbital-scale denitrification changes in the Eastern Arabian Sea during the last 800 kyrs[J]. Scientific Reports, 2018, 8(1): 7027.
    [84] Curray J R, Emmel F J, Moore D G. The Bengal Fan: morphology, geometry, stratigraphy, history and processes[J]. Marine and Petroleum Geology, 2002, 19(10): 1191−1223.
    [85] Contreras-Rosales L A, Schefuß E, Meyer V, et al. Origin and fate of sedimentary organic matter in the northern Bay of Bengal during the last 18 ka[J]. Global and Planetary Change, 2016, 146: 53−66.
    [86] Jian Zhimin, Huang Baoqi, Kuhnt W, et al. Late Quaternary upwelling intensity and East Asian monsoon forcing in the South China Sea[J]. Quaternary Research, 2001, 55(3): 363−370.
    [87] Su Xiang, Liu Chuanlian, Beaufort L, et al. Late Quaternary coccolith records in the South China Sea and East Asian monsoon dynamics[J]. Global and Planetary Change, 2013, 111: 88−96.
    [88] Li Gang, Rashid H, Zhong Lifeng, et al. Changes in deep water oxygenation of the South China Sea since the last glacial period[J]. Geophysical Research Letters, 2018, 45(17): 9058−9066.
    [89] Chen Minte, Shiau L J, Yu Paisen, et al. 500 000-year records of carbonate, organic carbon, and foraminiferal sea-surface temperature from the southeastern South China Sea (near Palawan Island)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 197(1/2): 113−131.
    [90] Qu Tangdong, Mitsudera H, Yamagata T. On the western boundary currents in the Philippine Sea[J]. Journal of Geophysical Research: Oceans, 1998, 103(C4): 7537−7548.
    [91] Tang Zheng, Li Tiegang, Chang Fengming, et al. Paleoproductivity evolution in the West Philippine Sea during the last 700 ka[J]. Chinese Journal of Oceanology and Limnology, 2013, 31(2): 435−444.
    [92] Fenies P, Bassetti M A, Riveiros N V, et al. Changes in the particulate organic carbon pump efficiency since the Last Glacial Maximum in the northwestern Philippine Sea[J]. Quaternary Science Advances, 2024, 15: 100223.
    [93] 石学法, 吴斌, 乔淑卿, 等. 中国东部近海沉积有机碳的分布、埋藏及碳汇效应[J]. 中国科学: 地球科学, 2024, 54(10): 3113−3133.

    Shi Xuefa, Wu Bin, Qiao Shuqing, et al. Distribution, burial fluxes and carbon sink effect of sedimentary organic carbon in the eastern China seas[J]. Science China Earth Sciences, 2024, 67(10): 3062−3082.
    [94] Zhao B, Yao P, Bianchi T S, et al. Controls on organic carbon burial in the Eastern China marginal seas: a regional synthesis[J]. Global Biogeochemical Cycles, 2021, 35(4): e2020GB006608.
    [95] Qiao Shuqing, Shi Xuefa, Wang Guoqing, et al. Sediment accumulation and budget in the Bohai sea, Yellow Sea and East China sea[J]. Marine Geology, 2017, 390: 270−281.
    [96] 汲雨, 赵彬, 李康, 等. 长江口−东海内陆架早期成岩过程及影响因素[J]. 海洋学报, 2023, 45(8): 73−85.

    Ji Yu, Zhao Bin, Li Kang, et al. Early diagenetic processes and influencing factors of the Changjiang River Estuary and East China Sea inner-shelf[J]. Haiyang Xuebao, 2023, 45(8): 73−85.
    [97] Guo Jinqiang, Yuan Huamao, Song Jinming, et al. Evaluation of sedimentary organic carbon reactivity and burial in the eastern China marginal seas[J]. Journal of Geophysical Research: Oceans, 2021, 126(4): e2021JC017207.
    [98] Chang Fengming, Li Tiegang, Xiong Zhifang, et al. Evidence for sea level and monsoonally driven variations in terrigenous input to the northern East China Sea during the last 24.3 ka[J]. Paleoceanography, 2015, 30(6): 642−658.
    [99] Chang Yuanpin, Chen Minte, Yokoyama Y, et al. Monsoon hydrography and productivity changes in the East China Sea during the past 100, 000 years: Okinawa Trough evidence (MD012404)[J]. Paleoceanography, 2009, 24(3): PA3208.
    [100] Oba T, Kato M, Kitazato H, et al. Paleoenvironmental changes in the Japan Sea during the last 85, 000 years[J]. Paleoceanography, 1991, 6(4): 499−518.
    [101] Stax R, Stein R. Quaternary organic carbon cycles in the Japan Sea (ODP-site 798) and their paleoceanographic implications[J]. Paleogeography, Palaeoclimatology, Palaeoecology, 1994, 108(3/4): 509−521.
    [102] Shibahara A, Ohkushi K, Kennett J P, et al. Late Quaternary changes in intermediate water oxygenation and oxygen minimum zone, northern Japan: a benthic foraminiferal perspective[J]. Paleoceanography, 2007, 22(3): PA3213.
    [103] Xing Lei, Zhang Rongping, Liu Yanguang, et al. Biomarker records of phytoplankton productivity and community structure changes in the Japan Sea over the last 166kyr[J]. Quaternary Science Reviews, 2011, 30(19/20): 2666−2675.
    [104] 程宇龙, 万世明. 晚新生代日本海古生产力演化——研究进展评述[J]. 沉积学报, 2023, 41(6): 1714−1738.

    Cheng Yulong, Wan Shiming. Late Cenozoic Paleo-productivity evolution of the Japan sea: a review[J]. Acta Sedimentologica Sinica, 2023, 41(6): 1714−1738.
    [105] Khim B K, Ikehara K, Irino T. Orbital‐and millennial‐scale paleoceanographic changes in the north‐eastern Japan Basin, East Sea/Japan Sea during the late Quaternary[J]. Journal of Quaternary Science, 2012, 27(3): 328−335.
    [106] Ternois Y, Kawamura K, Keigwin L, et al. A biomarker approach for assessing marine and terrigenous inputs to the sediments of Sea of Okhotsk for the last 27, 000 years[J]. Geochimica et Cosmochimica Acta, 2001, 65(5): 791−802.
    [107] Zou Jianjun, Shi Xuefa, Zhu Aimei, et al. Evidence of sea ice-driven terrigenous detritus accumulation and deep ventilation changes in the southern Okhotsk Sea during the last 180 ka[J]. Journal of Asian Earth Sciences, 2015, 114: 541−548.
    [108] Wang Anqi, Yao Zhengquan, Shi Xuefa, et al. Orbital and millennial variations in sea ice in the southwestern Okhotsk Sea since the last interglacial period and their implications[J]. Frontiers in Earth Science, 2021, 9: 710797.
    [109] Gorbarenko S A, Artemova A V, Goldberg E L, et al. The response of the Okhotsk Sea environment to the orbital-millennium global climate changes during the Last Glacial Maximum, deglaciation and Holocene[J]. Global and Planetary Change, 2014, 116: 76−90.
    [110] Seki O, Ikehara M, Kawamura K, et al. Reconstruction of paleoproductivity in the Sea of Okhotsk over the last 30 kyr[J]. Paleoceanography, 2004, 19(1): PA1016.
    [111] Chou Yumin, Jiang Xiaodong, Lo L, et al. Controls on terrigenous detritus deposition and oceanography changes in the central Okhotsk Sea over the past 1550 ka[J]. Frontiers in Earth Science, 2021, 9: 683984.
    [112] Vandenberghe J, French H M, Gorbunov A, et al. The Last Permafrost Maximum (LPM) map of the northern hemisphere: permafrost extent and mean annual air temperatures, 25–17 ka BP[J]. Boreas, 2014, 43(3): 652−666.
    [113] Winterfeld M, Mollenhauer G, Dummann W, et al. Deglacial mobilization of pre-aged terrestrial carbon from degrading permafrost[J]. Nature Communications, 2018, 9(1): 3666.
    [114] 吴淑玉, 刘俊, 褚宏宪, 等. 渤海西部海域百年以来有机碳来源和影响机制[J]. 海洋地质与第四纪地质, 2025, 45(1): 1−17.

    Wu Shuyu, Liu Jun, Chu Hongxian, et al. Sources and influencing mechanisms of organic carbon in the western Bohai Sea over the past century[J]. Marine Geology & Quaternary Geology, 2025, 45(1): 1−17.
    [115] 王秀行, 刘世昊, 胡维芬, 等. 黄河水下三角洲中晚全新世的有机碳埋藏及影响因素分析[J]. 第四纪研究, 2025, 45(1): 74−90. doi: 10.11928/j.issn.1001-7410.2025.01.07

    Wang Xiuhang, Liu Shihao, Hu Weifen, et al. The middle-and Late-Holocene burial history of organic carbon and its influencing factors in the Yellow River subaqueous delta[J]. Quaternary Sciences, 2025, 45(1): 74−90. doi: 10.11928/j.issn.1001-7410.2025.01.07
    [116] Wang Shuai, Fu Bojie, Piao Shilong, et al. Reduced sediment transport in the Yellow River due to anthropogenic changes[J]. Nature Geoscience, 2016, 9(1): 38−41.
    [117] Wang Chenglong, Zhang Chuchu, Wang Yameng, et al. Anthropogenic perturbations to the fate of terrestrial organic matter in a river-dominated marginal sea[J]. Geochimica et Cosmochimica Acta, 2022, 333: 242−262.
    [118] Liu Liangying, Wei Gaoling, Wang Jizhong, et al. Anthropogenic activities have contributed moderately to increased inputs of organic materials in marginal seas off China[J]. Environmental Science & Technology, 2013, 47(20): 11414−11422.
    [119] Wu Libin, Fu Pingqing, Xu Liqiang, et al. Changes in the source of sedimentary organic matter in the marginal sea sediments of Eastern Hainan Island in response to human activities during the past 200 years[J]. Quaternary International, 2017, 440: 150−159.
    [120] Zhou Chengzhen, Liu Maodian, Mason R P, et al. Warming-induced retreat of West Antarctic glaciers weakened carbon sequestration ability but increased mercury enrichment[J]. Nature Communications, 2025, 16(1): 1831.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  12
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-17
  • 修回日期:  2025-06-24
  • 网络出版日期:  2025-07-10

目录

    /

    返回文章
    返回