The impact of pile spacing and wave direction on wave energy variation in pile-net enclosed aquaculture areas
-
摘要: 围栏养殖海域波浪场的能量分布不仅对海域内的营养物质输送起到关键影响,同时也是内侧结构设施在设计校验时需要重点考虑的水文因素。因此,对波浪场受围栏结构影响导致的能量变化进行研究具有重要意义。利用FUNWAVE 2.0 数值模型模拟了不规则波浪在不同结构围栏养殖海域的传播过程,讨论了桩柱间距及波浪入射方向对波浪能量变化的影响。结果表明,内部设施如果距离外侧围栏较近,在保证强度稳定前提下,桩距选取应小于10 m,而如果距离外侧围栏较远,则应该选取大于10 m的桩距。此外,即使斜向入射波浪场,也有可能在某些特定位置处对围栏设施造成比正向入射波浪场更为剧烈的作用,在设计时同样也应该予以考虑。
-
关键词:
- 桩柱式围栏 /
- FUNWAVE 模型 /
- 能量变化 /
- 斜向传播
Abstract: The distribution of wave energy in enclosure aquaculture areas not only significantly influences nutrient transport but also constitutes a critical hydrological factor in validating the design of structures in inner aquaculture area. Investigating the changes in wave field energy influenced by these structures is crucial. The FUNWAVE 2.0 numerical model was employed to simulate irregular wave propagation in aquaculture areas with varying pile-net enclosure structures. The effects of pile spacing and incident wave angles in the evolution of wave energy was examined. The results indicate that if the internal facilities are positioned close to the outer pile-net enclosure structure, the pile spacing should be less than 1.0 m, provided that structural stability is ensured. Conversely, if the internal facilities are located farther from the outer pile-net enclosure, a pile spacing greater than 1.0 m should be selected. Additionally, oblique wave incidents may pose greater structural challenges at certain locations compared to normally incident waves, which should also be considered during design.-
Key words:
- pile-net enclosure structure /
- FUNWAVE model /
- energy variation /
- oblique propagation
-
图 8 波浪能量在不同桩距工况下的变化过程,其中x表示波浪传播距离,L为桩距;蓝色虚线表示排桩所在位置,橙色点划线表示底坡初始位置
Fig. 8 The evolution of wave energy with respect to different pile spacing condition, x denote the wave propagation distance, and L is the pile spacing; the blue dashed line indicate the location of the pile row, and the orange dotted line marks the initial position of the bottom slope
表 1 物理试验部分组次的试验参数
Tab. 1 The experimental parameters for the groups in the physical tests
工况 有效波高/cm 水深/cm 谱峰周期/s 礁坡斜率 1 7.92 43.9 0.99 1/5 2 7.68 43.9 1.26 1/5 3 7.32 43.9 1.41 1/5 4 9.14 43.9 1.84 1/5 表 2 入射波浪要素
Tab. 2 Incident wave parameters
入射波工况 波高/cm 周期/s 波长/m 波陡 1 10.41 0.80 1.00 0.10 2 16.53 1.00 1.54 0.11 表 3 网衣模型规格
Tab. 3 Specifications of the net
网衣工况 目脚长度/mm 网线直径/mm 网衣密实度 A 21 1.0 0.10 B 16 2.6 0.22 C 25 3.6 0.29 表 4 模拟采用的波况及多孔介质参数
Tab. 4 Wave condition parameters and porous coefficients adopted in simulations
工况 水深h/m 周期Tp/s 波高Hs0/m 桩距L/m 入射角度/° 桩径D/m Cn Ct 模型参数 1 1.2 3.5 0.3 0.4 / 0.6 / 0.8 / 1.0 45 / 75 / 90 0.1 76.3 10.4 2 1.0 3.0 0.2 81.9 10.7 3 1.0 3.0 0.2 / / / / / 对应原型值 1 12 12 3.0 4 / 6 / 8 / 10 45 / 75 / 90 1.0 2 10 10 2.0 3 10 10 2.0 / / / -
[1] 韩昕辰, 宋炜, 桂福坤, 等. 大黄鱼仿生态连岸式大型围栏养殖技术[J]. 中国水产, 2022(11): 79−81. doi: 10.3969/j.issn.1002-6681.2022.11.zhongguosc202211030Han Xinchen, Song Wei, Gui Fukun, et al. Bionic aquaculture technology of the shore large-scale fence in larimichthys crocea[J]. China Fisheries, 2022(11): 79−81. doi: 10.3969/j.issn.1002-6681.2022.11.zhongguosc202211030 [2] Yang Hui, Zhao Yunpeng, Bi Chunwei, et al. Experimental study on the interaction between focused waves and pipe pile enclosure structure[C]//Proceedings of the 29th International Ocean and Polar Engineering Conference. Honolulu, USA: ISOPE, 2019. [3] 林斌, 董志勇, 王品. 桩柱间距对桩柱上波浪荷载的影响[J]. 水运工程, 2016(5): 52−58. doi: 10.3969/j.issn.1002-4972.2016.05.010Lin Bin, Dong Zhiyong, Wang Pin. Influence of spacing between piles on on-coming wave force[J]. Port & Waterway Engineering, 2016(5): 52−58. doi: 10.3969/j.issn.1002-4972.2016.05.010 [4] 陈天华, 孟昂, 桂福坤. 波浪高度及方向对桩柱式围网养殖系统网片水力特性的影响[J]. 农业工程学报, 2017, 33(2): 245−251. doi: 10.11975/j.issn.1002-6819.2017.02.034Chen Tianhua, Meng Ang, Gui Fukun. Effect of wave height and direction on hydraulic characteristics of net of pile-column type net enclosure aquaculture system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(2): 245−251. doi: 10.11975/j.issn.1002-6819.2017.02.034 [5] 陈天华, 潘昀, 冯德军, 等. 固定方式对水流作用下桩柱式围网网片力学特性的影响[J]. 水产学报, 2018, 42(3): 452−460.Chen Tianhua, Pan Yun, Feng Dejun, et al. Effect on hydrodynamics of unit net of a column-type net enclosure aquaculture engineering in current by fixations[J]. Journal of Fisheries of China, 2018, 42(3): 452−460. [6] 桂福坤, 张斌斌, 曲晓玉, 等. 波流作用下围网养殖工程的桩柱结构受力分析[J]. 农业工程学报, 2020, 36(11): 31−38. doi: 10.11975/j.issn.1002-6819.2020.11.004Gui Fukun, Zhang Binbin, Qu Xiaoyu, et al. Force analysis of piles in net enclosure aquaculture engineering subjected to waves and current[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(11): 31−38. doi: 10.11975/j.issn.1002-6819.2020.11.004 [7] Zhao Yunpeng, Chen Qiupan, Bi Chunwei. Numerical investigation of nonlinear wave loads on a trestle-netting enclosure aquaculture facility[J]. Ocean Engineering, 2022, 257: 111610. doi: 10.1016/j.oceaneng.2022.111610 [8] Yang Hui, Xu Zhijing, Bi Chunwei, et al. Numerical modeling of interaction between steady flow and pile-net structures using a one-way coupling model[J]. Ocean Engineering, 2022, 254: 111362. doi: 10.1016/j.oceaneng.2022.111362 [9] 辛连鑫, 毕春伟, 赵云鹏, 等. 基于FUNWAVE-TVD模型的离岸养殖围网内外波浪场数值模拟研究[J]. 渔业科学进展, 2022, 43(6): 1−10.Xin Lianxin, Bi Chunwei, Zhao Yunpeng, et al. Numerical study on wave fields inside and around an offshore pile-net enclosure structure based on FUNWAVE-TVD model[J]. Progress in Fishery Sciences, 2022, 43(6): 1−10. [10] Cui Yong, Wang Gang, Guan Changtao. Numerical and experimental investigations of hydrodynamics of a fully-enclosed pile-net aquaculture pen in regular waves[J]. Frontiers in Marine Science, 2023, 10: 1175852. doi: 10.3389/fmars.2023.1175852 [11] Chen Hongzhou, Zhao Yongsen, Mei Lili, et al. Laboratory observation of nonlinear wave shapes due to spatial varying opposing currents[J]. Coastal Engineering, 2024, 190: 104500. doi: 10.1016/j.coastaleng.2024.104500 [12] Chen Qin, Kirby J T, Dalrymple R A, et al. Boussinesq modeling of wave transformation, breaking, and runup. II: 2D[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2000, 126(1): 48−56. doi: 10.1061/(ASCE)0733-950X(2000)126:1(48) [13] Bi Chunwei, Zhao Yunpeng, Dong Guohai. Numerical study on the hydrodynamic characteristics of biofouled full-scale net cage[J]. China Ocean Engineering, 2015, 29(3): 401−414. [14] Bi Chunwei, Zhao Yunpeng, Dong Guohai, et al. Experimental and numerical investigation on the damping effect of net cages in waves[J]. Journal of Fluids and Structures, 2015, 55: 122−138. doi: 10.1016/j.jfluidstructs.2015.02.010 [15] Tsukrov I, Eroshkin O, Fredriksson D, et al. Finite element modeling of net panels using a consistent net element[J]. Ocean Engineering, 2003, 30(2): 251−270. [16] Balash C, Colbourne B, Bose N, et al. Aquaculture net drag force and added mass[J]. Aquacultural Engineering, 2009, 41(1): 14−21. doi: 10.1016/j.aquaeng.2009.04.003 [17] Aarsnes J V, Rudi H, Løland G. Current forces on cage, net deflection[C]//Engineering for Offshore Fish Farming-Proceedings of the Conference Organised by the Institution of Civil Engineers. Glasgow: Thomas Telford Publishing, 1990: 137–152. [18] Smith E R, Hesser T J, Smith J M. Two-and three-dimensional laboratory studies of wave breaking, dissipation, setup, and runup on reefs: ERDC/CHL TR-12-21[R]. Vicksburg: US Army Engineer Research and Development Center, 2012. [19] Lader P F, Olsen A, Jensen A, et al. Experimental investigation of the interaction between waves and net structures—Damping mechanism[J]. Aquacultural Engineering, 2007, 37(2): 100−114. doi: 10.1016/j.aquaeng.2007.03.001 [20] Thornton E B, Guza R T. Transformation of wave height distribution[J]. Journal of Geophysical Research: Oceans, 1983, 88(C10): 5925−5938. doi: 10.1029/JC088iC10p05925 [21] Ma Yuxiang, Chen Hongzhou, Ma Xiaozhou, et al. A numerical investigation on nonlinear transformation of obliquely incident random waves on plane sloping bottoms[J]. Coastal Engineering, 2017, 130: 65−84. doi: 10.1016/j.coastaleng.2017.10.003 [22] Wang S K, Hsu T W, Weng W K, et al. A three-point method for estimating wave reflection of obliquely incident waves over a sloping bottom[J]. Coastal Engineering, 2008, 55(2): 125−138. doi: 10.1016/j.coastaleng.2007.09.002