留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

桩距和波向对围栏养殖海域波浪场能量变化的影响

赵永森 陈洪洲 桂福坤 王振宇 张顺

赵永森,陈洪洲,桂福坤,等. 桩距和波向对围栏养殖海域波浪场能量变化的影响[J]. 海洋学报,2024,46(x):1–9
引用本文: 赵永森,陈洪洲,桂福坤,等. 桩距和波向对围栏养殖海域波浪场能量变化的影响[J]. 海洋学报,2024,46(x):1–9
Zhao Yongsen,Chen Hongzhou,Gui Fukun, et al. The impact of pile spacing and wave direction on wave energy variation in pile-net enclosed aquaculture areas[J]. Haiyang Xuebao,2024, 46(x):1–9
Citation: Zhao Yongsen,Chen Hongzhou,Gui Fukun, et al. The impact of pile spacing and wave direction on wave energy variation in pile-net enclosed aquaculture areas[J]. Haiyang Xuebao,2024, 46(x):1–9

桩距和波向对围栏养殖海域波浪场能量变化的影响

基金项目: 国家自然科学基金面上项目(42376205、32002441);国家重点研发计划项目(2020YFE0200100)共同资助。
详细信息
    作者简介:

    赵永森,男,硕士研究生,研究方向港口海岸及近海工程。Emai:ZYS1998062024@163.com

    通讯作者:

    陈洪洲,男,博士,副教授,研究方向深远海养殖装备水动力学,近岸波浪非线性。Email: 379988848@163.com

  • 中图分类号: TV139.2+6

The impact of pile spacing and wave direction on wave energy variation in pile-net enclosed aquaculture areas

  • 摘要: 围栏养殖海域波浪场的能量分布不仅对海域内的营养物质输送起到关键影响,同时也是内侧结构设施在设计校验时需要重点考虑的水文因素。因此,对波浪场受围栏结构影响导致的能量变化进行研究具有重要意义。利用FUNWAVE 2.0 数值模型模拟了不规则波浪在不同结构围栏养殖海域的传播过程,讨论了桩柱间距及波浪入射方向对波浪能量变化的影响。结果表明,内部设施如果距离外侧围栏较近,在保证强度稳定前提下,桩距选取应小于10 m,而如果距离外侧围栏较远,则应该选取大于10 m的桩距。此外,即使斜向入射波浪场,也有可能在某些特定位置处对围栏设施造成比正向入射波浪场更为剧烈的作用,在设计时同样也应该予以考虑。
  • 图  1  围栏养殖工程(连岸式)

    Fig.  1  Enclosure aquaculture project (near-shore)

    图  2  外侧与内侧围栏结构

    Fig.  2  Outer and inner enclosure structures

    图  3  SWIMS 项目实验地形及测点位置

    Fig.  3  The topography and gauge locations of the experiment for SWIMS project

    图  4  模拟计算所得的特征波高值与试验数据间的比较

    Fig.  4  Comparison between the characteristic wave heights obtained from simulation and the experimental data

    图  5  波浪与网衣相互作用试验布置示意图

    Fig.  5  Sketch of the experimental setup for wave and net interaction

    图  6  不同网衣对波浪能量变化的影响

    Fig.  6  The effect of different nets on wave energy variation

    图  7  数值模拟试验布置概图,红点为测点位置

    Fig.  7  Sketch of the numerical experimental setup, the red dots are the measurement locations

    图  8  波浪能量在不同桩距工况下的变化过程,其中x表示波浪传播距离,L为桩距;蓝色虚线表示排桩所在位置,橙色点划线表示底坡初始位置

    Fig.  8  The evolution of wave energy with respect to different pile spacing condition, x denote the wave propagation distance, and L is the pile spacing; the blue dashed line indicate the location of the pile row, and the orange dotted line marks the initial position of the bottom slope

    图  9  波浪沿不同角度入射时的能量变化过程(L=0.8m);蓝色虚线表示排桩所在位置,橙色点划线表示底坡初始位置

    Fig.  9  The process of energy variation when waves are incident at different angles (L=0.8m); the blue dashed line indicates the location of the pile row, the orange dotted line marks the initial position of the bottom slope.

    表  1  物理试验部分组次的试验参数

    Tab.  1  The experimental parameters for the groups in the physical tests

    工况有效波高/cm水深/cm谱峰周期/s礁坡斜率
    17.9243.90.991/5
    27.6843.91.261/5
    37.3243.91.411/5
    49.1443.91.841/5
    下载: 导出CSV

    表  2  入射波浪要素

    Tab.  2  Incident wave parameters

    入射波工况波高/cm周期/s波长/m波陡
    110.410.801.000.10
    216.531.001.540.11
    下载: 导出CSV

    表  3  网衣模型规格

    Tab.  3  Specifications of the net

    网衣工况目脚长度/mm网线直径/mm网衣密实度
    A211.00.10
    B162.60.22
    C253.60.29
    下载: 导出CSV

    表  4  模拟采用的波况及多孔介质参数

    Tab.  4  Wave condition parameters and porous coefficients adopted in simulations

    工况 水深h/m 周期Tp/s 波高Hs0/m 桩距L/m 入射角度/° 桩径D/m Cn Ct
    模型参数 1 1.2 3.5 0.3 0.4 / 0.6 / 0.8 / 1.0 45 / 75 / 90 0.1 76.3 10.4
    2 1.0 3.0 0.2 81.9 10.7
    3 1.0 3.0 0.2 / / / / /
    对应原型值 1 12 12 3.0 4 / 6 / 8 / 10 45 / 75 / 90 1.0
    2 10 10 2.0
    3 10 10 2.0 / / /
    下载: 导出CSV
  • [1] 韩昕辰, 宋炜, 桂福坤, 等. 大黄鱼仿生态连岸式大型围栏养殖技术[J]. 中国水产, 2022(11): 79−81. doi: 10.3969/j.issn.1002-6681.2022.11.zhongguosc202211030

    Han Xinchen, Song Wei, Gui Fukun, et al. Bionic aquaculture technology of the shore large-scale fence in larimichthys crocea[J]. China Fisheries, 2022(11): 79−81. doi: 10.3969/j.issn.1002-6681.2022.11.zhongguosc202211030
    [2] Yang Hui, Zhao Yunpeng, Bi Chunwei, et al. Experimental study on the interaction between focused waves and pipe pile enclosure structure[C]//Proceedings of the 29th International Ocean and Polar Engineering Conference. Honolulu, USA: ISOPE, 2019.
    [3] 林斌, 董志勇, 王品. 桩柱间距对桩柱上波浪荷载的影响[J]. 水运工程, 2016(5): 52−58. doi: 10.3969/j.issn.1002-4972.2016.05.010

    Lin Bin, Dong Zhiyong, Wang Pin. Influence of spacing between piles on on-coming wave force[J]. Port & Waterway Engineering, 2016(5): 52−58. doi: 10.3969/j.issn.1002-4972.2016.05.010
    [4] 陈天华, 孟昂, 桂福坤. 波浪高度及方向对桩柱式围网养殖系统网片水力特性的影响[J]. 农业工程学报, 2017, 33(2): 245−251. doi: 10.11975/j.issn.1002-6819.2017.02.034

    Chen Tianhua, Meng Ang, Gui Fukun. Effect of wave height and direction on hydraulic characteristics of net of pile-column type net enclosure aquaculture system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(2): 245−251. doi: 10.11975/j.issn.1002-6819.2017.02.034
    [5] 陈天华, 潘昀, 冯德军, 等. 固定方式对水流作用下桩柱式围网网片力学特性的影响[J]. 水产学报, 2018, 42(3): 452−460.

    Chen Tianhua, Pan Yun, Feng Dejun, et al. Effect on hydrodynamics of unit net of a column-type net enclosure aquaculture engineering in current by fixations[J]. Journal of Fisheries of China, 2018, 42(3): 452−460.
    [6] 桂福坤, 张斌斌, 曲晓玉, 等. 波流作用下围网养殖工程的桩柱结构受力分析[J]. 农业工程学报, 2020, 36(11): 31−38. doi: 10.11975/j.issn.1002-6819.2020.11.004

    Gui Fukun, Zhang Binbin, Qu Xiaoyu, et al. Force analysis of piles in net enclosure aquaculture engineering subjected to waves and current[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(11): 31−38. doi: 10.11975/j.issn.1002-6819.2020.11.004
    [7] Zhao Yunpeng, Chen Qiupan, Bi Chunwei. Numerical investigation of nonlinear wave loads on a trestle-netting enclosure aquaculture facility[J]. Ocean Engineering, 2022, 257: 111610. doi: 10.1016/j.oceaneng.2022.111610
    [8] Yang Hui, Xu Zhijing, Bi Chunwei, et al. Numerical modeling of interaction between steady flow and pile-net structures using a one-way coupling model[J]. Ocean Engineering, 2022, 254: 111362. doi: 10.1016/j.oceaneng.2022.111362
    [9] 辛连鑫, 毕春伟, 赵云鹏, 等. 基于FUNWAVE-TVD模型的离岸养殖围网内外波浪场数值模拟研究[J]. 渔业科学进展, 2022, 43(6): 1−10.

    Xin Lianxin, Bi Chunwei, Zhao Yunpeng, et al. Numerical study on wave fields inside and around an offshore pile-net enclosure structure based on FUNWAVE-TVD model[J]. Progress in Fishery Sciences, 2022, 43(6): 1−10.
    [10] Cui Yong, Wang Gang, Guan Changtao. Numerical and experimental investigations of hydrodynamics of a fully-enclosed pile-net aquaculture pen in regular waves[J]. Frontiers in Marine Science, 2023, 10: 1175852. doi: 10.3389/fmars.2023.1175852
    [11] Chen Hongzhou, Zhao Yongsen, Mei Lili, et al. Laboratory observation of nonlinear wave shapes due to spatial varying opposing currents[J]. Coastal Engineering, 2024, 190: 104500. doi: 10.1016/j.coastaleng.2024.104500
    [12] Chen Qin, Kirby J T, Dalrymple R A, et al. Boussinesq modeling of wave transformation, breaking, and runup. II: 2D[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2000, 126(1): 48−56. doi: 10.1061/(ASCE)0733-950X(2000)126:1(48)
    [13] Bi Chunwei, Zhao Yunpeng, Dong Guohai. Numerical study on the hydrodynamic characteristics of biofouled full-scale net cage[J]. China Ocean Engineering, 2015, 29(3): 401−414.
    [14] Bi Chunwei, Zhao Yunpeng, Dong Guohai, et al. Experimental and numerical investigation on the damping effect of net cages in waves[J]. Journal of Fluids and Structures, 2015, 55: 122−138. doi: 10.1016/j.jfluidstructs.2015.02.010
    [15] Tsukrov I, Eroshkin O, Fredriksson D, et al. Finite element modeling of net panels using a consistent net element[J]. Ocean Engineering, 2003, 30(2): 251−270.
    [16] Balash C, Colbourne B, Bose N, et al. Aquaculture net drag force and added mass[J]. Aquacultural Engineering, 2009, 41(1): 14−21. doi: 10.1016/j.aquaeng.2009.04.003
    [17] Aarsnes J V, Rudi H, Løland G. Current forces on cage, net deflection[C]//Engineering for Offshore Fish Farming-Proceedings of the Conference Organised by the Institution of Civil Engineers. Glasgow: Thomas Telford Publishing, 1990: 137–152.
    [18] Smith E R, Hesser T J, Smith J M. Two-and three-dimensional laboratory studies of wave breaking, dissipation, setup, and runup on reefs: ERDC/CHL TR-12-21[R]. Vicksburg: US Army Engineer Research and Development Center, 2012.
    [19] Lader P F, Olsen A, Jensen A, et al. Experimental investigation of the interaction between waves and net structures—Damping mechanism[J]. Aquacultural Engineering, 2007, 37(2): 100−114. doi: 10.1016/j.aquaeng.2007.03.001
    [20] Thornton E B, Guza R T. Transformation of wave height distribution[J]. Journal of Geophysical Research: Oceans, 1983, 88(C10): 5925−5938. doi: 10.1029/JC088iC10p05925
    [21] Ma Yuxiang, Chen Hongzhou, Ma Xiaozhou, et al. A numerical investigation on nonlinear transformation of obliquely incident random waves on plane sloping bottoms[J]. Coastal Engineering, 2017, 130: 65−84. doi: 10.1016/j.coastaleng.2017.10.003
    [22] Wang S K, Hsu T W, Weng W K, et al. A three-point method for estimating wave reflection of obliquely incident waves over a sloping bottom[J]. Coastal Engineering, 2008, 55(2): 125−138. doi: 10.1016/j.coastaleng.2007.09.002
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  2
  • HTML全文浏览量:  1
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-26
  • 修回日期:  2024-11-12
  • 网络出版日期:  2024-11-22

目录

    /

    返回文章
    返回