Research progress and prospects of underwater target detection based on buoys
-
摘要: 水下目标探测是我国“透明海洋”工程的重要组成部分。但是由于水下环境复杂多变,实现精确高效的水下目标探测依然存在很大难度。作为跨界面的海上固定平台,浮标是构建全方位立体化的综合探测网络的重要组成部分,能够同时满足海洋关键位置的全天候监控并实现实时信息传输,对更加准确实时的水下目标信息获取手段进行补充。本文在总结现有基于浮标的水下目标探测方法的基础上,对光学探测、电磁探测、通信中继等水下目标探测和信息传输技术进行了介绍,并结合浮标应用特点对相关技术进行了梳理和分析,以期对基于浮标的水下目标探测技术的研究及应用提供有益的启发和借鉴。Abstract: Underwater target detection is an important part of China's “transparent ocean” project. However, due to the complex and ever-changing underwater environment, achieving accurate and efficient detection of underwater targets remains a significant challenge. As a fixed offshore platform across the sea, the buoy is an important part of building a comprehensive and three-dimensional detection network, which can simultaneously meet the all-weather monitoring requirements of key locations in the ocean and achieve real-time information transmission, complementing more accurate and real-time underwater target information acquisition methods. Based on the summary of existing underwater target detection methods based on buoys, this article introduces optical detection, electromagnetic detection, communication relay, and other underwater target detection and information transmission technologies. It also combs and analyzes relevant technologies in combination with the application characteristics of buoys, with a view to providing useful inspiration and reference for the research and application of underwater target detection technology based on buoys.
-
Key words:
- ocean buoy /
- underwater target detection /
- communication relay
-
表 1 3种不同技术分支的技术重点和难点以及解决方向
Tab. 1 AAAA
水下目标光学探测技术 水下目标电磁探测技术 浮标通信中继技术 重点难点 光照和成像质量、水下光的散射和衰减以及复杂背景下的多种类目标识别等 极端情况下的噪声干扰、探测距离和深度受限、数据处理复杂程度较高等 环境适应性、通信距离及鲁棒性、组网通信干扰、系统能耗及数据传输效率等 解决方向 结合使用水下图像增强技术、距离选通技术、激光线扫描技术和条纹管成像技术等,
注重硬件和软件技术的协同优化研究系统抗干扰能力提升方法、优化电磁信号处理模型、加强目标电磁特性研究、提升数据处理与分析技术 设备设计,材料优化,降低和优化配置设备功耗,通过优化通信实现数据处理与传输效率提升 -
[1] 吴立新, 陈朝晖, 林霄沛, 等. “透明海洋”立体观测网构建[J]. 科学通报, 2020, 65(25): 2654−2661. doi: 10.1360/TB-2020-0558Wu Lixin, Chen Zhaohui, Lin Xiaopei, et al. Building the integrated observational network of “Transparent Ocean”[J]. Chinese Science Bulletin, 2020, 65(25): 2654−2661. doi: 10.1360/TB-2020-0558 [2] 段雯娟. “透明海洋”深刻影响中国未来 访中国科学院院士、中国海洋大学教授吴立新[J]. 地球, 2015(7): 10−14.Duan Wenjuan. “Transparent Ocean” has a profound impact on China's future visit to Wu Lixin, an academician of the CAS Member and a professor of Ocean University of China[J]. Earth, 2015(7): 10−14. (查阅网上资料, 未找到对应的英文翻译, 请确认) [3] 沈军宇, 李林燕, 戴永良, 等. 基于YOLO算法的鱼群探测监控系统[J]. 苏州科技大学学报(自然科学版), 2020, 37(3): 68−73.Shen Junyu, Li Linyan, Dai Yongliang, et al. A fish detecting and monitoring system based on YOLO algorithm[J]. Journal of Suzhou University of Science and Technology (Natural Science), 2020, 37(3): 68−73. [4] Cui Suxia, Zhou Yu, Wang Yonghui, et al. Fish detection using deep learning[J]. Applied Computational Intelligence and Soft Computing, 2020, 2020: 3738108. [5] Li Xiu, Shang Min, Qin Hongwei, et al. Fast accurate fish detection and recognition of underwater images with Fast R-CNN[C]//Proceedings of the OCEANS 2015-MTS/IEEE Washington. Washington: IEEE, 2015: 1−5. [6] Dobeck G J. Algorithm fusion for automated sea mine detection and classification[C]//Proceedings of the MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings. Honolulu: IEEE, 2001: 130−134. [7] Aridgides T, Fernandez M F, Dobeck G J. Adaptive clutter suppression and fusion processing string for sea mine detection and classification in sonar imagery[C]//Proceedings of SPIE 3392, Detection and Remediation Technologies for Mines and Minelike Targets Ⅲ. Orlando: SPIE, 1998: 243−254. [8] 魏志强, 张志强, 蒋俊杰. 浅地层剖面仪在大亚湾海底管道检测中的应用[J]. 海洋测绘, 2009, 29(6): 71−73. doi: 10.3969/j.issn.1671-3044.2009.06.020Wei Zhiqiang, Zhang Zhiqiang, Jiang Junjie. Application of subbottom profiler in inspecting investigation of daya bay seabed pipeline[J]. Hydrographic Surveying and Charting, 2009, 29(6): 71−73. doi: 10.3969/j.issn.1671-3044.2009.06.020 [9] Zhang Hongwei, Zhang Shitong, Wang Yanhui, et al. Subsea pipeline leak inspection by autonomous underwater vehicle[J]. Applied Ocean Research, 2021, 107: 102321. doi: 10.1016/j.apor.2020.102321 [10] 马永, 李家彪, 吴自银, 等. 综合物探技术在海洋考古中的应用——以川岛水下考古为例[J]. 海洋学研究, 2016, 34(2): 43−52. doi: 10.3969/j.issn.1001-909X.2016.02.006Ma Yong, Li Jiabiao, Wu Ziyin, et al. The application of an integrated geophysical prospecting system to underwater archeology-An example from Chuan Island, Guangdong Province[J]. Journal of Marine Sciences, 2016, 34(2): 43−52. doi: 10.3969/j.issn.1001-909X.2016.02.006 [11] Reggiannini M, Salvetti O. Seafloor analysis and understanding for underwater archeology[J]. Journal of Cultural Heritage, 2017, 24: 147−156. doi: 10.1016/j.culher.2016.10.012 [12] Abrahamsson R, Kay S M, Stoica P. Estimation of the parameters of a bilinear model with applications to submarine detection and system identification[J]. Digital Signal Processing, 2007, 17(4): 756−773. doi: 10.1016/j.dsp.2006.04.005 [13] Chandrasekhar A, Vivekananthan V, Khandelwal G, et al. A sustainable blue energy scavenging smart buoy toward self-powered smart fishing net tracker[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(10): 4120−4127. [14] 孙玉兰, 朱练军, 那健, 等. 潜标式水下目标噪声测量系统[J]. 测试技术学报, 2002, 16(S1): 505−508. doi: 10.3969/j.issn.1671-7449.2002.z1.104Sun Yulan, Zhu Lianjun, Na Jian, et al. Buoyed under water noise monitor system[J]. Journal of Test and Measurement Technology, 2002, 16(S1): 505−508. doi: 10.3969/j.issn.1671-7449.2002.z1.104 [15] 师俊杰, 吕云飞, 孙大军, 等. 潜标姿态变化对矢量水听器目标方位估计的影响[J]. 声学技术, 2014, 33(2): 125−130.Shi Junjie, Lü Yunfei, Sun Dajun, et al. Influence of attitude changes of subsurface buoy on DOA estimation of vector hydrophone[J]. Technical Acoustics, 2014, 33(2): 125−130. [16] 张坤, 张慧娟, 方勇. 岸潜综合业务宽带通信关键技术与实现[J]. 计算机与网络, 2009, 35(9): 49−51. doi: 10.3969/j.issn.1008-1739.2009.09.038Zhang Kun, Zhang Huijuan, Fang Yong. Implementation on shore-to-submarine wideband integrated service communication and its key techniques[J]. China Computer & Network, 2009, 35(9): 49−51. doi: 10.3969/j.issn.1008-1739.2009.09.038 [17] King P, Venkatesan R, Li Cheng. A study of channel capacity for a seabed underwater acoustic sensor network[C]//Proceedings of the OCEANS 2008. Quebec City: IEEE, 2008: 1−5. [18] Hayes H C. Detection of submarines[J]. Proceedings of the American Philosophical Society, 1920, 59(1): 1−47. [19] 邓见奎, 王云兴, 王明月. 基频线谱提取技术在船舶水下目标识别系统的应用[J]. 舰船科学技术, 2017, 39(7A): 115−117.Deng Jiankui, Wang Yunxing, Wang Mingyue. Application of fundamental frequency line spectrum extraction technology in underwater target recognition system[J]. Ship Science and Technology, 2017, 39(7A): 115−117. [20] 邓彬, 李韬, 汤斌, 等. 基于太赫兹雷达的声致海面微动信号检测[J]. 雷达学报, 2023, 12(4): 817−831. doi: 10.12000/JR23117Deng Bin, Li Tao, Tang Bin, et al. Feature detection of acoustically induced sea surface micro-motions with terahertz radar[J]. Journal of Radars, 2023, 12(4): 817−831. doi: 10.12000/JR23117 [21] Zhang Zhiqiang, Shi Jian, Yu Zhang, et al. Feasibility analysis of submarine detection method based on the airborne gravity gradient[C]//Proceedings of the 37th Chinese Control Conference. Wuhan: IEEE, 2018: 4587−4591. [22] 王军成. 新一代海洋监测技术——综合智能观测浮标[J]. 智能系统学报, 2022, 17(3): 447. doi: 10.11992/tis.202204028Wang Juncheng. A new generation of ocean monitoring technology——integrated intelligent observation buoy[J]. CAAI Transactions on Intelligent Systems, 2022, 17(3): 447. doi: 10.11992/tis.202204028 [23] Li Yunzhou, Wang Juncheng. Technical development of operational in-situ marine monitoring and research on its key generic technologies in China[J]. Acta Oceanologica Sinica, 2023, 42(10): 117−126. doi: 10.1007/s13131-023-2207-5 [24] 周金元, 唐原广, 赵曙东. 基于海洋资料浮标上目标探测系统的集成设计[J]. 气象水文海洋仪器, 2013, 30(2): 73−76. doi: 10.3969/j.issn.1006-009X.2013.02.018Zhou Junyuan, Tang Yuanguang, Zhao Shudong. Integrated design of target detection system based on marine data buoy[J]. Meteorological, Hydrological and Marine Instruments, 2013, 30(2): 73−76. doi: 10.3969/j.issn.1006-009X.2013.02.018 [25] 王超, 韩梅, 孙芹东, 等. 一种新型水下声学浮标在目标探测中的应用[J]. 热带海洋学报, 2021, 40(2): 130−138. doi: 10.11978/2020045Wang Chao, Han Mei, Sun Qindong, et al. Application of a new type of underwater acoustic buoy in target detection[J]. Journal of Tropical Oceanography, 2021, 40(2): 130−138. doi: 10.11978/2020045 [26] Stewart J L, Westerfield E C. A theory of active sonar detection[J]. Proceedings of the IRE, 1959, 47(5): 872−881. doi: 10.1109/JRPROC.1959.287283 [27] Hahn W R. Optimum signal processing for passive sonar range and bearing estimation[J]. The Journal of the Acoustical Society of America, 1975, 58(1): 201−207. doi: 10.1121/1.380646 [28] 李敏, 孙贵青, 李启虎. 分布式浮标阵水下高速运动声源三维被动定位[J]. 声学学报, 2009, 34(4): 289−295. doi: 10.3321/j.issn:0371-0025.2009.04.001Li Min, Sun Guiqing, Li Qihu. Three dimensional passive localization based on distributed buoy array for underwater moving sound source with high speed[J]. Acta Acustica, 2009, 34(4): 289−295. doi: 10.3321/j.issn:0371-0025.2009.04.001 [29] 赵聪蛟, 周燕. 国内海洋浮标监测系统研究概况[J]. 海洋开发与管理, 2013, 30(11): 13−18.Zhao Congjiao, Zhou Yan. [J]. Ocean Development and Management, 2013, 30(11): 13−18. (查阅网上资料, 未找到对应的英文翻译, 请确认) [30] 邓秀华, 刘飞, 梅新华. 一种基于锚系垂直阵列的水下移动目标警戒方法[J]. 数字海洋与水下攻防, 2020, 3(1): 76−81.Deng Xiuhua, Liu Fei, Mei Xinhua. An alert method for underwater mobile target based on moored vertical array[J]. Digital Ocean & Underwater Warfare, 2020, 3(1): 76−81. [31] 刘帅京, 许枫, 杨娟. 稳健声线扰动特征用于浅海小目标定位[J]. 应用声学, 2021, 40(6): 810−820. doi: 10.11684/j.issn.1000-310X.2021.06.002Liu Shuaijing, Xu Feng, Yang Juan. Small target localization in shallow sea based on the perturbation feature of stable eigenrays[J]. Journal of Applied Acoustics, 2021, 40(6): 810−820. doi: 10.11684/j.issn.1000-310X.2021.06.002 [32] 王佳婧, 赵向涛, 寇祝. 深远海预置水下预警探测锚系平台及作战应用[C]//第五届水下无人系统技术高峰论坛——以深制海, 智领发展论文集. 西安: 中国造船工程学会, 2022: 64−68.Wang Jiajing, Zhao Xiangtao, Kou Zhu. Deep sea pre-installed underwater warning and detection anchor platform and its combat application[C]//Proceedings of the 5th Underwater Unmanned System Technology Summit Forum of the Chinese Society of Naval Architects and Marine Engineers. Xi’an: The Chinese Society of Naval Architects and Marine Engineers, 2022: 64−68. (查阅网上资料, 未找到对应的英文翻译, 请确认) [33] 郭小玮, 郑广赢, 严琪. 用于浅海有源声呐目标深度估计的匹配相位处理[J]. 声学学报, 2022, 47(6): 800−809.Guo Xiaowei, Zheng Guangying, Yan Qi. Matched phase processing for active target depth estimation in shallow water[J]. Acta Acustica, 2022, 47(6): 800−809. [34] Kikuchi T, Inoue J, Langevin D. Argo-type profiling float observations under the Arctic multiyear ice[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2007, 54(9): 1675−1686. doi: 10.1016/j.dsr.2007.05.011 [35] Ma Lin, Gulliver T A, Zhao Anbang, et al. An underwater bistatic positioning system based on an acoustic vector sensor and experimental investigation[J]. Applied Acoustics, 2021, 171: 107558. doi: 10.1016/j.apacoust.2020.107558 [36] 孙芹东, 王超, 张小川, 等. 二维矢量水听器及其在Argo浮标平台上的应用技术[J]. 兵工学报, 2020, 41(8): 1566−1572. doi: 10.3969/j.issn.1000-1093.2020.08.011Sun Qindong, Wang Chao, Zhang Xiaochuan, et al. Two-dimensional vector hydrophone and its application in Argo buoy platform[J]. Acta Armamentarii, 2020, 41(8): 1566−1572. doi: 10.3969/j.issn.1000-1093.2020.08.011 [37] Kavoosi V, Dehghani M J, Javidan R. Underwater acoustic source positioning by isotropic and vector hydrophone combination[J]. Journal of Sound and Vibration, 2021, 501: 116031. doi: 10.1016/j.jsv.2021.116031 [38] 何心怡, 邱志明, 张春华, 等. 一种基于三枚主动全向浮标的水下目标定位方法[J]. 武汉理工大学学报(交通科学与工程版), 2007, 31(6): 1021−1024.He Xinyi, Qiu Zhiming, Zhang Chunhua, et al. Positioning method of underwater target based on three active omnidirectional buoys[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2007, 31(6): 1021−1024. [39] 王新为, 尹成义. 反潜巡逻机使用被动全向声呐浮标对潜跟踪方法[J]. 指挥控制与仿真, 2017, 39(3): 60−63. doi: 10.3969/j.issn.1673-3819.2017.03.013Wang Xinwei, Yin Chengyi. Submarine tracking method of anti-submarine patrol aircraft using passive omni-directional sonobuoy[J]. Command Control & Simulation, 2017, 39(3): 60−63. doi: 10.3969/j.issn.1673-3819.2017.03.013 [40] Almeida R, Cruz N, Matos A. Synchronized intelligent buoy network for underwater positioning[C]//Proceedings of the OCEANS 2010 MTS/IEEE SEATTLE. Seattle: IEEE, 2010: 1−6. [41] 吴月东. 声纳浮标搜潜网络节点配置数目的确定和优化[J]. 舰船电子工程, 2007, 27(5): 150−152. doi: 10.3969/j.issn.1627-9730.2007.05.047Wu Yuedong. Determination and optimization of node placement number for sonobuoy WSN of searching submarine[J]. Ship Electronic Engineering, 2007, 27(5): 150−152. doi: 10.3969/j.issn.1627-9730.2007.05.047 [42] Kurano S, Ishiwata T, Konishi N. The study of the float buoy ranging system for the underwater vehicle[C]//Proceedings of the 2000 International Symposium on Underwater Technology. Tokyo: IEEE, 2000: 161−166. [43] Ma Yan, Mao Zhaoyong, Qin J, et al. A quick deployment method for sonar buoy detection under the overview situation of underwater cluster targets[J]. IEEE Access, 2020, 8: 11−25. doi: 10.1109/ACCESS.2019.2961555 [44] 战和, 杨日杰, 金中原. 被动定向浮标探潜模型研究[J]. 声学技术, 2016, 35(2): 125−128.Zhan He, Yang Rijie, Jin Zhongyuan. Research on detection model of passive directional buoys[J]. Technical Acoustics, 2016, 35(2): 125−128. [45] 曾海燕, 杨日杰, 周旭. 声纳浮标搜潜优化布放技术研究[J]. 指挥控制与仿真, 2012, 34(1): 82−85. doi: 10.3969/j.issn.1673-3819.2012.01.020Zeng Haiyan, Yang Rijie, Zhou Xu. Research on sonobuoys deployment technology in searching submarine[J]. Command Control & Simulation, 2012, 34(1): 82−85. doi: 10.3969/j.issn.1673-3819.2012.01.020 [46] 王磊, 吴福初, 陈钰宁, 等. 基于声纳浮标的反潜直升机应召搜潜仿真研究[J]. 指挥控制与仿真, 2010, 32(2): 84−88. doi: 10.3969/j.issn.1673-3819.2010.02.022Wang Lei, Wu Fuchu, Chen Yuning, et al. Simulative research of on-call antisubmarine of ASW helicopter using sonar buoy[J]. Command Control & Simulation, 2010, 32(2): 84−88. doi: 10.3969/j.issn.1673-3819.2010.02.022 [47] 梁巍, 杨日杰, 熊雄. 被动定向声纳浮标跟踪潜艇优化布放[J]. 兵工自动化, 2017, 36(10): 42−45,79.Liang Wei, Yang Rijie, Xiong Xiong. Optimal deployment of passive directional sonobuoy in underwater target tracking[J]. Ordnance Industry Automation, 2017, 36(10): 42−45,79. [48] 杨日杰, 周旭, 张林琳. 主动全向声纳浮标跟踪潜艇优化布放方法[J]. 系统工程与电子技术, 2011, 33(10): 2249−2253. doi: 10.3969/j.issn.1001-506X.2011.10.21Yang Rijie, Zhou Xu, Zhang Linlin. Optimal deployment of active omni-directional sonobuoys in underwater target tracking[J]. Systems Engineering and Electronics, 2011, 33(10): 2249−2253. doi: 10.3969/j.issn.1001-506X.2011.10.21 [49] 唐晨, 孙秀文, 王旅. 反潜巡逻机对潜应召搜索声呐浮标布放阵位优化问题研究[J]. 舰船电子工程, 2022, 42(2): 62−65. doi: 10.3969/j.issn.1672-9730.2022.02.013Tang Chen, Sun Xiuwen, Wang Lv. Research on optimization position of sonobuoy in anti-submarine call-search by anti-submarine patrol aircraft[J]. Ship Electronic Engineering, 2022, 42(2): 62−65. doi: 10.3969/j.issn.1672-9730.2022.02.013 [50] 南银波, 曾广荣. 基于HLA的反潜巡逻机浮标搜潜模型仿真框架结构设计[J]. 国外电子测量技术, 2017, 36(5): 78−80,85. doi: 10.3969/j.issn.1002-8978.2017.05.018Nan Yinbo, Zeng Guangrong. Anti-submarine patrol aircraft buoy searching submarine model simulation frame design based on HLA[J]. Foreign Electronic Measurement Technology, 2017, 36(5): 78−80,85. doi: 10.3969/j.issn.1002-8978.2017.05.018 [51] 王牧原, 马良荔, 陈鹏先, 等. 基于Dubins路径的浮标搜潜阵型优化[J]. 兵器装备工程学报, 2023, 44(S1): 216−220, 255. (查阅网上资料, 未找到本条文献信息, 请确认) Wang Muyuan, Ma Liangli, Chen Pengxian, et al. [J]. Journal of Ordnance Equipment Engineering, 2023, 44(S1): 216−220, 255. [52] Benmohamed L, Chimento P, Doshi B, et al. Sensor network design for underwater surveillance[C]//Proceedings of the MILCOM 2006-2006 IEEE Military Communications Conference. Washington: IEEE, 2006: 1−7. [53] Saksena A, Benmohamed L, Dunne J, et al. Improving system-wide detection performance for sonar buoy networks using in-network fusion[C]//Proceedings of the MILCOM 2007-IEEE Military Communications Conference. Orlando: IEEE, 2007: 1−7. [54] Wang Xuemin, Lu Renwei, Li Wenhai. Underwater target passive detection method based on Hough transform track-before-detect[J]. Journal of Physics: Conference Series, 2022, 2258(1): 012073. doi: 10.1088/1742-6596/2258/1/012073 [55] 鞠建波, 张雨杭, 敬玉平. 基于北斗系统的被动浮标对潜定位精度分析[J]. 指挥控制与仿真, 2018, 40(4): 29−32. doi: 10.3969/j.issn.1673-3819.2018.04.007Ju Jianbo, Zhang Yuhang, Jing Yuping. Analysis of positioning accuracy of submarine by passive sonobuoy based on Beidou system[J]. Command Control & Simulation, 2018, 40(4): 29−32. doi: 10.3969/j.issn.1673-3819.2018.04.007 [56] Liu Mengzhuo, Zhu Jifeng, Pan Xiaohe, et al. A distributed intelligent buoy system for tracking underwater vehicles[J]. Journal of Marine Science and Engineering, 2023, 11(9): 1661. doi: 10.3390/jmse11091661 [57] 许爱强, 盛沛, 谭勖. 机载浮标搜潜系统搜潜效能评估模型[J]. 兵工自动化, 2011, 30(8): 43−45. doi: 10.3969/j.issn.1006-1576.2011.08.013Xu Aiqiang, Sheng Pei, Tan Xu. A model for evaluating submarine reconnaissance effectiveness of air-borne buoy submarine reconnaissance system[J]. Ordnance Industry Automation, 2011, 30(8): 43−45. doi: 10.3969/j.issn.1006-1576.2011.08.013 [58] 秦锋, 孙明太, 周利辉. 航空被动声纳浮标搜潜作战效能仿真模型[C]//第14届中国系统仿真技术及其应用学术年会. 三亚: 中国自动化学会系统仿真专业委员会, 2012: 535−539.Qin Feng, Sun Mingtai, Zhou Lihui. Simulation model for air passive sonobuoys combat effectiveness of searching submarine[C]//Proceedings of 14th Chinese Conference on System Simulation Technology & Application. Sanya: System Simulation Professional Committee of the Chinese Society of Automation, 2012: 535−539. (查阅网上资料, 未找到对应的英文翻译, 请确认) [59] 成建波. 基于声呐浮标的大型无人机搜潜效能分析[J]. 声学与电子工程, 2023(1): 37−40.Cheng Jianbo. Analysis of submarine search effectiveness of large-scale unmanned aerial vehicles based on sonar buoys[J]. Acoustics and Electronics Engineering, 2023(1): 37−40. (查阅网上资料, 未找到对应的英文翻译, 请确认) [60] Li Yuhan, Ruan Ruizhi, Zhou Zupeng, et al. Positioning of unmanned underwater vehicle based on autonomous tracking buoy[J]. Sensors, 2023, 23(9): 4398. doi: 10.3390/s23094398 [61] Caiti A, Garulli A, Livide F, et al. Localization of autonomous underwater vehicles by floating acoustic buoys: a set-membership approach[J]. IEEE Journal of Oceanic Engineering, 2005, 30(1): 140−152. doi: 10.1109/JOE.2004.841432 [62] 刘百峰, 罗坤, 赵珩. 基于中继浮标实现水下运动目标大范围监测方法研究[J]. 舰船电子工程, 2013, 33(2): 144−146. doi: 10.3969/j.issn.1627-9730.2013.02.050Liu Baifeng, Luo Kun, Zhao Heng. Mobile great range measure-lineup of underwater object based on buoy relay[J]. Ship Electronic Engineering, 2013, 33(2): 144−146. doi: 10.3969/j.issn.1627-9730.2013.02.050 [63] Rice J, Wilson G, Barlett M, et al. Maritime surveillance in the intracoastal waterway using networked underwater acoustic sensors integrated with a regional command center[C]//Proceedings of 2010 International WaterSide Security Conference. Carrara: IEEE, 2010: 1−6. [64] Zolich A, Alfredsen J A, Johansen T A, et al. A communication bridge between underwater sensors and unmanned vehicles using a surface wireless sensor network-design and validation[C]//Proceedings of the OCEANS 2016-Shanghai. Shanghai: IEEE, 2016: 1−9. [65] 曾财高. 浅海远程水声通信关键技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2022.Zeng Caigao. Research on long-range underwater acoustic communication in shallow water[D]. Harbin: Harbin Engineering University, 2022. [66] Ju Jianbo, Yu Hongbo. Based on different buoy array under the submarine evasive time[C]//Proceedings of 2019 IEEE International Conference on Signal, Information and Data Processing. Chongqing: IEEE, 2019: 1−5. [67] 高学强, 杨日杰, 杨春英. 潜艇规避对主动声纳浮标作战效能影响研究[J]. 系统工程与电子技术, 2008, 30(2): 300−303. doi: 10.3321/j.issn:1001-506X.2008.02.026Gao Xueqiang, Yang Rijie, Yang Chunying. Research on the effects of submarine evasion on combat effectiveness of active sonobuoy[J]. Systems Engineering and Electronics, 2008, 30(2): 300−303. doi: 10.3321/j.issn:1001-506X.2008.02.026 [68] Bae H S, Kim W K, Son S U, et al. Imaging of artificial bubble distribution using a multi-sonar array system[J]. Journal of Marine Science and Engineering, 2022, 10(12): 1822. doi: 10.3390/jmse10121822 [69] 盛基伟, 胡成军. 浮标干扰声纳浮标与反潜飞机通信的可行性分析[J]. 数字技术与应用, 2010(7): 139−140.Sheng Jiwei, Hu Chengjun. Feasibility analysis of buoy interference sonar buoy and anti submarine aircraft communication[J]. Digital Technology & Application, 2010(7): 139−140. (查阅网上资料, 未找到对应的英文翻译, 请确认) [70] Fefilatyev S, Goldgof D B, Lembke C. Autonomous buoy platform for low-cost visual maritime surveillance: design and initial deployment[C]//Proceedings of SPIE 7317, Ocean Sensing and Monitoring. Orlando: SPIE, 2009: 48−59. [71] Raimondi F M, Trapanese M, Martorana P, et al. A security and surveillance application of the innovative monitoring underwater buoy systems (MUnBuS) on the protected marine area (AMP) of capo Gallo (PA-IT)[C]//Proceedings of the OCEANS 2015-MTS/IEEE Washington. Washington: IEEE, 2015: 1−4. [72] Yang Liming, Liang Jian, Zhang Wenfei, et al. Underwater polarimetric imaging for visibility enhancement utilizing active unpolarized illumination[J]. Optics Communications, 2019, 438: 96−101. doi: 10.1016/j.optcom.2018.12.022 [73] Wang Jiajie, Wan Minjie, Cao Xiqing, et al. Active non-uniform illumination-based underwater polarization imaging method for objects with complex polarization properties[J]. Optics Express, 2022, 30(26): 46926−46943. doi: 10.1364/OE.474026 [74] Han Pingli, Liu Fei, Yang Kui, et al. Active underwater descattering and image recovery[J]. Applied Optics, 2017, 56(23): 6631−6638. doi: 10.1364/AO.56.006631 [75] Austin R W, Duntley S Q, Ensminger R L, et al. Underwater laser scanning system[C]//Proceedings of SPIE 1537, Underwater Imaging, Photography, and Visibility. San Diego: SPIE, 1991: 57−73. [76] Bleier M, van der Lucht J, Nüchter A. SCOUT 3D–An underwater laser scanning system for mobile mapping[C]//Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Strasbourg: ISPRS, 2019: 13−18. [77] Yang Yu, Zheng Bing, Zheng Haiyong, et al. 3D reconstruction for underwater laser line scanning[C]//Proceedings of the 2013 MTS/IEEE OCEANS-Bergen. Bergen: IEEE, 2013: 1−3. [78] Kulp T J, Garvis D, Kennedy R, et al. Current status of the NAVSEA synchronous scanning laser imaging system[C]//Proceedings of SPIE 0980, Underwater Imaging. San Diego: SPIE, 1988: 57−65. [79] Wang Hongyuan, Hu Haofeng, Jiang Junfeng, et al. Automatic underwater polarization imaging without background region or any prior[J]. Optics Express, 2021, 29(20): 31283−31295. doi: 10.1364/OE.434398 [80] Deng Jinxin, Zhu Jingping, Li Haoxiang, et al. Real-time underwater polarization imaging without relying on background[J]. Optics and Lasers in Engineering, 2023, 169: 107721. doi: 10.1016/j.optlaseng.2023.107721 [81] Wu Houde, Zhao Ming, Li Fengqiang, et al. Underwater polarization-based single pixel imaging[J]. Journal of the Society for Information Display, 2020, 28(2): 157−163. doi: 10.1002/jsid.838 [82] 许珈诺, 赵健, 李校博, 等. 基于频谱信息的浑浊水下偏振成像技术[J]. 光学学报, 2023, 43(18): 1811001. doi: 10.3788/AOS230463Xu Jianuo, Zhao Jian, Li Xiaobo, et al. Polarization imaging in turbid water based on spectral information[J]. Acta Optica Sinica, 2023, 43(18): 1811001. doi: 10.3788/AOS230463 [83] Mariani P, Quincoces I, Haugholt K H, et al. Range-gated imaging system for underwater monitoring in ocean environment[J]. Sustainability, 2018, 11(1): 162. doi: 10.3390/su11010162 [84] Tan C S, Sluzek A, Seet G L G, et al. Range gated imaging system for underwater robotic vehicle[C]//Proceedings of the OCEANS 2006-Asia Pacific. Singapore: IEEE, 2006: 1−6. [85] Fournier G R, Bonnier D, Forand J L, et al. Range-gated underwater laser imaging system[J]. Optical Engineering, 1993, 32(9): 2185−2190. doi: 10.1117/12.143954 [86] 孙健, 张晓晖, 葛卫龙, 等. 距离选通激光水下成像系统的门控信号对图像质量的影响[J]. 光学学报, 2009, 29(8): 2185−2190. doi: 10.3788/AOS20092908.2185Sun Jian, Zhang Xiaohui, Ge Weilong, et al. Relation between imaging quality and gate-control signal of underwater range-gated imaging system[J]. Acta Optica Sinica, 2009, 29(8): 2185−2190. doi: 10.3788/AOS20092908.2185 [87] Ouyang Bing, Dalgleish F R, Caimi F M, et al. Compressive line sensing underwater imaging system[J]. Optical Engineering, 2014, 53(5): 051409. doi: 10.1117/1.OE.53.5.051409 [88] Monika R, Dhanalakshmi S, Kumar R, et al. Coefficient permuted adaptive block compressed sensing for camera enabled underwater wireless sensor nodes[J]. IEEE Sensors Journal, 2022, 22(1): 776−784. doi: 10.1109/JSEN.2021.3130947 [89] Maccarone A, Drummond K, McCarthy A, et al. Submerged single-photon LiDAR imaging sensor used for real-time 3D scene reconstruction in scattering underwater environments[J]. Optics Express, 2023, 31(10): 16690−16708. doi: 10.1364/OE.487129 [90] Hollmann M, Engelmann J, Von Der Emde G. Distribution, density and morphology of electroreceptor organs in mormyrid weakly electric fish: anatomical investigations of a receptor mosaic[J]. Journal of Zoology, 2008, 276(2): 149−158. doi: 10.1111/j.1469-7998.2008.00465.x [91] Rasnow B. The Effects of simple objects on the electric field of apteronotus[J]. Journal of Comparative Physiology A, 1996, 178(3): 397−411. [92] Bai Yang, Snyder J B, Peshkin M, et al. Finding and identifying simple objects underwater with active electrosense[J]. The International Journal of Robotics Research, 2015, 34(10): 1255−1277. doi: 10.1177/0278364915569813 [93] 雍涛. 水下主动电场定位系统二维空间定位特性及算法研究[D]. 成都: 电子科技大学, 2015.Yong Tao. Research on the electrical location characteristic in two-dimensional space and the positioning algorithm of underwater active electrolocation system[D]. Chengdu: University of Electronic Science and Technology of China, 2015. [94] 赵玉川. 基于旋转电流场的水下定位系统设计与实现[D]. 哈尔滨: 哈尔滨工程大学, 2016.Zhao Yuchuan. Design and realization of the underwater positioning system based on rotated current field[D] Harbin: Harbin Engineering University, 2016. [95] 刘亮. 基于传导电流场理论的水下定位系统研究[D]. 哈尔滨: 哈尔滨工程大学, 2015.Liu Liang. Research of the underwater positioning system based on the conduction current field theory[D]. Harbin: Harbin Engineering University, 2015. [96] 杨超. 水下主动电场定位关键特性研究[D]. 成都: 电子科技大学, 2014.Yang Chao. Research on the critical features in underwater active electrolocation[D]. Chengdu: University of Electronic Science and Technology of China, 2014. [97] 祝悦. 基于主动电场定位的水下终端对接目标定位研究[D]. 成都: 电子科技大学, 2017.Zhu Yue. Research on target location in underwater terminal docking based on active electrolocation[D]. Chengdu: University of Electronic Science and Technology of China, 2017. [98] Primdahl F. The fluxgate magnetometer[J]. Journal of Physics E: Scientific Instruments, 1979, 12(4): 241−253. doi: 10.1088/0022-3735/12/4/001 [99] Pendlebury J M, Smith K, Unsworth P, et al. Precision field averaging NMR magnetometer for low and high fields, using flowing water[J]. Review of Scientific Instruments, 1979, 50(5): 535−540. doi: 10.1063/1.1135904 [100] Beljers H G, van der Kint L, van Wieringen J S. Overhauser effect in a free radical[J]. Physical Review, 1954, 95(6): 1683. [101] Dehmelt H G. Slow spin relaxation of optically polarized sodium atoms[J]. Physical Review, 1957, 105(5): 1487−1489. doi: 10.1103/PhysRev.105.1487 [102] Cowls S, Jordan S. The enhancement and verification of a pulse induction based buried pipe and cable survey system[C]//Proceedings of the OCEANS'02 MTS/IEEE. Biloxi: IEEE, 2002: 508−511. [103] Qi Youzheng, Huang Ling, Wang Xucun, et al. Airborne transient electromagnetic modeling and inversion under full attitude change[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9): 1575−1579. doi: 10.1109/LGRS.2017.2724558 [104] 李丁山, 屈文璋, 许诚, 等. 基于航空瞬变电磁法的水下高导体探测方法[J]. 水下无人系统学报, 2023, 31(4): 607−613. doi: 10.11993/j.issn.2096-3920.2023-0063Li Dingshan, Qu Wenzhang, Xu Cheng, et al. Underwater detection method of highly conductively targets based on airborne transient electromagnetic method[J]. Journal of Unmanned Undersea Systems, 2023, 31(4): 607−613. doi: 10.11993/j.issn.2096-3920.2023-0063 [105] Szyrowski T, Sharma S K, Sutton R, et al. Developments in subsea power and telecommunication cables detection: Part 1-Visual and hydroacoustic tracking[J]. Underwater Technology, 2013, 31(3): 123−132. doi: 10.3723/ut.31.123 [106] Szyrowski T, Sharma S K, Sutton R, et al. Developments in subsea power and telecommunication cables detection: Part 2-Electromagnetic detection[J]. Underwater Technology, 2013, 31(3): 133−143. doi: 10.3723/ut.31.133 [107] Zhang Jialei, Xiang Xianbo, Li Weijia, et al. Fermat’s spiral smooth planar path planning under origin-departing and corner-cutting transitions for autonomous marine vehicles[J]. Ocean Engineering, 2020, 215: 107901. doi: 10.1016/j.oceaneng.2020.107901 [108] 朱武兵. 探测安静型潜艇的磁探浮标[J]. 声学与电子工程, 2001(2): 12−18.Zhu Wubing. Magnetic buoy for detecting quiet submarines[J]. Acoustics and Electronics Engineering, 2001(2): 12−18. (查阅网上资料, 未找到对应的英文翻译, 请确认) [109] 王猛, 邓明, 伍忠良, 等. 新型坐底式海洋可控源电磁发射系统及其海试应用[J]. 地球物理学报, 2017, 60(11): 4253−4261. doi: 10.6038/cjg20171113Wang Meng, Deng Ming, Wu Zhongliang, et al. New type deployed marine controlled source electromagnetic transmitter system and its experiment application[J]. Chinese Journal of Geophysics, 2017, 60(11): 4253−4261. doi: 10.6038/cjg20171113 [110] Li Hongyu, Fan Yanjun, Wen Yicheng, et al. Communication management and data compression algorithm design of BeiDou transparent transmission terminal for Argo buoy[J]. Journal of Marine Science and Engineering, 2024, 12(1): 173. doi: 10.3390/jmse12010173 [111] Li Yang, Zhang Zhongshan, Wei Huangfu, et al. Sea route monitoring system using wireless sensor network based on the data compression algorithm[J]. China Communications, 2014, 11(13): 179−186. doi: 10.1109/CC.2014.7022543 [112] Ku K K K, Bradbeer R, Hodgson P, et al. A low-cost, three-dimensional and real-time marine environment monitoring system, Databuoy with connection to the internet[C]//Proceedings of the OCEANS 2008-MTS/IEEE Kobe Techno-Ocean. Kobe: IEEE, 2008: 1−5. [113] Park J, Seok J, Hong J. Autoencoder-based signal modulation and demodulation methods for sonobuoy signal transmission and reception[J]. Sensors, 2022, 22(17): 6510. doi: 10.3390/s22176510 [114] Cui Xiangbiao, Xu Jiayi, Pang Shui, et al. Design and implementation of inductively coupled power and data transmission for buoy systems[J]. Energies, 2023, 16(11): 4417. doi: 10.3390/en16114417 [115] Shi Xianpeng, Lembke C. Characteristic function–based trial-and-error control of underwater profilers for vertical-column observation[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2016, 230(3): 523−530. doi: 10.1177/1475090215604859 [116] Anghinolfi M, Calzas A, Dinkespiler B, et al. The underwater power and communications hub of the ANTARES neutrino telescope[C]//Proceedings of the IEEE Nuclear Science Symposium Conference Record, 2005. Fajardo: IEEE, 2005: 438−442. [117] Ardid M, Martínez-Mora J A, Bou-Cabo M, et al. Acoustic transmitters for underwater neutrino telescopes[J]. Sensors, 2012, 12(4): 4113−4132. doi: 10.3390/s120404113 [118] Li Dongdong, Shen Qi, Chen Wei, et al. Proof-of-principle demonstration of quantum key distribution with seawater channel: towards space-to-underwater quantum communication[J]. Optics Communications, 2019, 452: 220−226. doi: 10.1016/j.optcom.2019.07.037 [119] Ma Hongyang, Teng Jikai, Hu Tong, et al. Co-communication protocol of underwater sensor networks with quantum and acoustic communication capabilities[J]. Wireless Personal Communications, 2020, 113(1): 337−347. doi: 10.1007/s11277-020-07192-7 [120] Baker Jr R M L, Baker B S. Interdisciplinary communication: from gravitational waves to multiuniverses[J]. Systemics, Cybernetics and Informatics, 2020, 18(1): 217−243. [121] Ghafoor H, Noh Y. An overview of next-generation underwater target detection and tracking: an integrated underwater architecture[J]. IEEE Access, 2019, 7: 98841−98853. doi: 10.1109/ACCESS.2019.2929932 [122] Inzartsev A V, Pavin A M. AUV cable tracking system based on electromagnetic and video data[C]//Proceedings of the OCEANS 2008-MTS/IEEE Kobe Techno-Ocean. Kobe: IEEE, 2008: 1−6. -
计量
- 文章访问数: 27
- HTML全文浏览量: 15
- PDF下载量: 13
- 被引次数: 0