留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

楚科奇海百年尺度冻土有机碳的埋藏及其对气候变化的响应

武倩倩 李中乔 张松 任健 白有成 季仲强 李宏亮 金海燕 陈建芳

武倩倩,李中乔,张松,等. 楚科奇海百年尺度冻土有机碳的埋藏及其对气候变化的响应[J]. 海洋学报,2024,46(9):29–37 doi: 10.12284/hyxb2024112
引用本文: 武倩倩,李中乔,张松,等. 楚科奇海百年尺度冻土有机碳的埋藏及其对气候变化的响应[J]. 海洋学报,2024,46(9):29–37 doi: 10.12284/hyxb2024112
Wu Qianqian,Li Zhongqiao,Zhang Song, et al. The burial of permafrost organic carbon in the Chukchi Sea and its response to climate change in the past 200 years[J]. Haiyang Xuebao,2024, 46(9):29–37 doi: 10.12284/hyxb2024112
Citation: Wu Qianqian,Li Zhongqiao,Zhang Song, et al. The burial of permafrost organic carbon in the Chukchi Sea and its response to climate change in the past 200 years[J]. Haiyang Xuebao,2024, 46(9):29–37 doi: 10.12284/hyxb2024112

楚科奇海百年尺度冻土有机碳的埋藏及其对气候变化的响应

doi: 10.12284/hyxb2024112
基金项目: 国家自然科学基金(U23A203,42076242);全球变化与海气相互作用II期(GASI-04-HYST-06);上海交通大学深蓝计划(SL2023MS019)。
详细信息
    作者简介:

    武倩倩 ( 1998— ),女,安徽省阜阳市人,主要从事海洋生物地球化学研究。E-mail:wuqq525@163.com

    通讯作者:

    李中乔(1984—),男,副研究员,主要从事海洋生物地球化学研究。E-mail:lizq@sio.org.cn

  • 中图分类号: P736.21

The burial of permafrost organic carbon in the Chukchi Sea and its response to climate change in the past 200 years

  • 摘要: 在全球变暖的背景下,北极出现了冻土退化、夏季海冰减少、陆地径流输入增加和沿岸侵蚀加剧等一系列变化。随着全球变暖,封存于冻土中的有机碳(Organic Carbon,OC)正在向海加速迁移和释放,这将影响北冰洋的碳循环的格局,但目前鲜有证据能直接证实这一推论。本文通过分析楚科奇海两根百年尺度沉积岩芯的木质素和碳同位素,讨论了其所埋藏的有机质的来源和剖面变化情况。结果显示楚科奇海柱状沉积物中的有机碳来源于陆生C3植物的草本组织和海洋源生产的混合贡献;沉积物中木质素的绝对含量Σ8呈现上升趋势,证明随着全球变暖,更多的陆源物质被输运到楚科奇海。本研究表明人类活动引起的全球变暖确实增加了冻土有机碳向海的迁移,陆源输入增强导致的木质素含量增加是百年尺度下全球变暖导致冻土融化增强的直接证据。
  • 图  1  楚科奇海R1和C07沉积岩芯采样点

    Fig.  1  Sampling stations for cores of R1 and C07 in Chukchi Sea

    图  2  楚科奇海R1、C07沉积岩芯TOC(%)、δ13C(‰)、OCT%、OCM%随沉积年代变化的分布趋势

    Fig.  2  Distribution trend of TOC (%), δ 13C (‰), OCT%, in sedimentary cores and OCM% of R1 and C07 in Chukchi Sea with changes in sedimentary age

    图  3  楚科奇海R1和C07沉积岩芯相关参数,包括Σ8[mg/(10 g)]dw、Λ8[mg/(100 mg)]OC、V[mg/(10 g)]dw、S[mg/(10 g)]dw、C[mg/(10 g)]dw、DHBA[mg/(100 mg)]OC、LPVI

    Fig.  3  Relevant parameters of R1 and C07 sedimentary cores in Chukchi Sea, including Σ8[mg/(10 g)]dw, Λ8[mg/(100 mg)]OC, V[mg/(10 g)]dw, S[mg/(10 g)]dw, C[mg/(10 g)]dw, DHBA[mg/(100 mg)]OC, LPVI

    图  4  楚科奇海R1和C07沉积岩芯木质素参数S/V、C/V比值分布情况

    a. 被子植物木本植物,b. 被子植物草本组织,c. 裸子植物木本组织,d. 裸子植物草本组织

    Fig.  4  Distribution of S/V and C/V ratios of lignin parameters in sediment cores of R1 and C07 in Chukchi Sea

    a. Woody plants of angiosperms, b. herbaceous tissues of angiosperms, c. woody tissues of gymnosperms, d. herbaceous tissues of gymnosperms

    图  5  楚科奇海R1、C07沉积岩芯Λ8[mg/(100 mg)]OC和δ13C(‰)的来源分析

    Fig.  5  Source analysis of Λ8[mg/(100 mg)]OC and δ13C(‰) of R1 and C07 sedimentary cores in the Chukchi Sea

  • [1] Meyer V D, Hefter J, Köhler P, et al. Permafrost-carbon mobilization in Beringia caused by deglacial meltwater runoff, sea-level rise and warming[J]. Environmental Research Letters, 2019, 14(8): 085003. doi: 10.1088/1748-9326/ab2653
    [2] Peterson B J, Holmes R M, McClelland J W, et al. Increasing river discharge to the Arctic Ocean[J]. Science, 2002, 298(5601): 2171−2173. doi: 10.1126/science.1077445
    [3] Stroeve J, Holland M M, Meier W, et al. Arctic sea ice decline: faster than forecast[J]. Geophysical Research Letters, 2007, 34(9): L09501.
    [4] Bröder L, Andersson A, Tesi T, et al. Quantifying degradative loss of terrigenous organic carbon in surface sediments across the Laptev and East Siberian Sea[J]. Global Biogeochemical Cycles, 2019, 33(1): 85−99. doi: 10.1029/2018GB005967
    [5] Stocker T F, Qin Dahe, Plattner G K, et al. Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2013.
    [6] Schuur E A G, McGuire A D, Schädel C, et al. Climate change and the permafrost carbon feedback[J]. Nature, 2015, 520(7546): 171−179. doi: 10.1038/nature14338
    [7] Schuur E A G, Bockheim J, Canadell J G, et al. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle[J]. Bioscience, 2008, 58(8): 701−714. doi: 10.1641/B580807
    [8] Barnhart K R, Anderson R S, Overeem I, et al. Modeling erosion of ice-rich permafrost bluffs along the Alaskan Beaufort Sea coast[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(5): 1155−1179. doi: 10.1002/2013JF002845
    [9] Günther F, Overduin P P, Yakshina I A, et al. Observing Muostakh disappear: permafrost thaw subsidence and erosion of a ground-ice-rich island in response to arctic summer warming and sea ice reduction[J]. The Cryosphere, 2015, 9(1): 151−178. doi: 10.5194/tc-9-151-2015
    [10] Bröder L, Tesi T, Salvadó J A, et al. Fate of terrigenous organic matter across the Laptev Sea from the mouth of the Lena River to the deep sea of the Arctic interior[J]. Biogeosciences, 2016, 13(17): 5003−5019. doi: 10.5194/bg-13-5003-2016
    [11] Semiletov I P, Shakhova N E, Pipko I I, et al. Space-time dynamics of carbon and environmental parameters related to carbon dioxide emissions in the Buor-Khaya Bay and adjacent part of the Laptev Sea[J]. Biogeosciences, 2013, 10(9): 5977−5996. doi: 10.5194/bg-10-5977-2013
    [12] Vonk J E, Sánchez-García L, van Dongen B E, et al. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia[J]. Nature, 2012, 489(7414): 137−140. doi: 10.1038/nature11392
    [13] Keskitalo K, Tesi T, Bröder L, et al. Sources and characteristics of terrestrial carbon in Holocene-scale sediments of the East Siberian Sea[J]. Climate of the Past, 2017, 13(9): 1213−1226. doi: 10.5194/cp-13-1213-2017
    [14] Tesi T, Muschitiello F, Smittenberg R H, et al. Massive remobilization of permafrost carbon during post-glacial warming[J]. Nature Communications, 2016, 7: 13653. doi: 10.1038/ncomms13653
    [15] Winterfeld M, Mollenhauer G, Dummann W, et al. Deglacial mobilization of pre-aged terrestrial carbon from degrading permafrost[J]. Nature Communications, 2018, 9(1): 3666. doi: 10.1038/s41467-018-06080-w
    [16] Martens J, Wild B, Pearce C, et al. Remobilization of old permafrost carbon to Chukchi Sea sediments during the end of the Last Deglaciation[J]. Global Biogeochemical Cycles, 2019, 33(1): 2−14. doi: 10.1029/2018GB005969
    [17] Jakobsson M. Hypsometry and volume of the Arctic Ocean and its constituent seas[J]. Geochemistry, Geophysics, Geosystems, 2002, 3(5): 1028.
    [18] Cronin T M, O’Regan M, Pearce C, et al. Deglacial sea level history of the East Siberian Sea and Chukchi Sea margins[J]. Climate of the Past, 2017, 13(9): 1097−1110. doi: 10.5194/cp-13-1097-2017
    [19] Jakobsson M, Pearce C, Cronin T M, et al. Post-glacial flooding of the Bering Land Bridge dated to 11 cal ka BP based on new geophysical and sediment records[J]. Climate of the Past, 2017, 13(8): 991−1005. doi: 10.5194/cp-13-991-2017
    [20] Stein R, MacDonald R W, Naidu A S, et al. Organic carbon in arctic ocean sediments: sources, variability, burial, and paleoenvironmental significance[M]//Stein R, MacDonald R W. The Organic Carbon Cycle in the Arctic Ocean. Berlin Heidelberg: Springer, 2004: 169−314.
    [21] Olefeldt D, Goswami S, Grosse G, et al. Circumpolar distribution and carbon storage of thermokarst landscapes[J]. Nature Communications, 2016, 7: 13043. doi: 10.1038/ncomms13043
    [22] Lantuit H, Overduin P P, Couture N, et al. The Arctic coastal dynamics database: a new classification scheme and statistics on Arctic permafrost coastlines[J]. Estuaries and Coasts, 2012, 35(2): 383−400. doi: 10.1007/s12237-010-9362-6
    [23] Su Liang, Ren Jian, Sicre M A, et al. Changing sources and burial of organic carbon in the Chukchi Sea sediments with retreating sea ice over recent centuries[J]. Climate of the Past, 2023, 19(7): 1305−1320. doi: 10.5194/cp-19-1305-2023
    [24] Bai Youcheng, Sicre M A, Ren Jian, et al. Centennial-scale variability of sea-ice cover in the Chukchi Sea since AD 1850 based on biomarker reconstruction[J]. Environmental Research Letters, 2022, 17(4): 044058. doi: 10.1088/1748-9326/ac5f92
    [25] Hedges J I, Ertel J R. Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products[J]. Analytical Chemistry, 1982, 54(2): 174−178. doi: 10.1021/ac00239a007
    [26] Tesi T, Semiletov I, Hugelius G, et al. Composition and fate of terrigenous organic matter along the Arctic land–ocean continuum in East Siberia: insights from biomarkers and carbon isotopes[J]. Geochimica et Cosmochimica Acta, 2014, 133: 235−256. doi: 10.1016/j.gca.2014.02.045
    [27] Goñi M A, Ruttenberg K C, Eglinton T I. Sources and contribution of terrigenous organic carbon to surface sediments in the Gulf of Mexico[J]. Nature, 1997, 389(6648): 275−278. doi: 10.1038/38477
    [28] Goñi M A, Ruttenberg K C, Eglinton T I. A reassessment of the sources and importance of land-derived organic matter in surface sediments from the Gulf of Mexico[J]. Geochimica et Cosmochimica Acta, 1998, 62(18): 3055−3075. doi: 10.1016/S0016-7037(98)00217-8
    [29] Tareq S M, Handa N, Tanoue E. A lignin phenol proxy record of mid Holocene paleovegetation changes at Lake DaBuSu, northeast China[J]. Journal of Geochemical Exploration, 2006, 88(1/3): 445−449.
    [30] Farella N, Lucotte M, Louchouarn P, et al. Deforestation modifying terrestrial organic transport in the Rio Tapajós, Brazilian Amazon[J]. Organic Geochemistry, 2001, 32(12): 1443−1458. doi: 10.1016/S0146-6380(01)00103-6
    [31] Yang Liyang, Wu Ying, Zhang Jing, et al. Burial of terrestrial and marine organic carbon in Jiaozhou Bay: different responses to urbanization[J]. Regional Environmental Change, 2011, 11(3): 707−714. doi: 10.1007/s10113-010-0202-9
    [32] Hedges J I, Keil R G, Benner R. What happens to terrestrial organic matter in the ocean?[J]. Organic Geochemistry, 1997, 27(5/6): 195−212.
    [33] 郑永飞, 陈江峰. 稳定同位素地球化学[M]. 北京: 科学出版社, 2000.

    Zheng Yongfei, Chen Jiangfeng. Stable Isotope Geochemistry[M]. Beijing: Science Press, 2000.
    [34] Naidu A S, Cooper L W, Finney B P, et al. Organic carbon isotope ratios (δ13C) of Arctic Amerasian Continental shelf sediments[J]. International Journal of Earth Sciences, 2000, 89(3): 522−532. doi: 10.1007/s005310000121
    [35] Goñi M A, O’Connor A E, Kuzyk Z Z, et al. Distribution and sources of organic matter in surface marine sediments across the North American Arctic margin[J]. Journal of Geophysical Research: Oceans, 2013, 118(9): 4017−4035. doi: 10.1002/jgrc.20286
    [36] Vonk J E, Gustafsson Ö. Permafrost-carbon complexities[J]. Nature Geoscience, 2013, 6(9): 675−676. doi: 10.1038/ngeo1937
  • 加载中
图(5)
计量
  • 文章访问数:  133
  • HTML全文浏览量:  59
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-23
  • 录用日期:  2024-08-12
  • 修回日期:  2024-05-31
  • 网络出版日期:  2024-08-13
  • 刊出日期:  2024-09-01

目录

    /

    返回文章
    返回