留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

波潮型河口泥沙输运研究——以粤西漠阳江河口为例

黄恩茂 张涛 刘德政 朱志远 梁曜 贾良文

黄恩茂,张涛,刘德政,等. 波潮型河口泥沙输运研究——以粤西漠阳江河口为例[J]. 海洋学报,2024,46(x):1–14
引用本文: 黄恩茂,张涛,刘德政,等. 波潮型河口泥沙输运研究——以粤西漠阳江河口为例[J]. 海洋学报,2024,46(x):1–14
Huang Enmao,Zhang Tao,Liu Dezheng, et al. Study on sediment transport in a wave and tide dominated estuary: A case study of Moyang River estuary in western Guangdong Province[J]. Haiyang Xuebao,2024, 46(x):1–14
Citation: Huang Enmao,Zhang Tao,Liu Dezheng, et al. Study on sediment transport in a wave and tide dominated estuary: A case study of Moyang River estuary in western Guangdong Province[J]. Haiyang Xuebao,2024, 46(x):1–14

波潮型河口泥沙输运研究——以粤西漠阳江河口为例

基金项目: 漠阳江河口动力特性及拦门沙演变(HLSJCG-20220103)。
详细信息
    作者简介:

    黄恩茂(1999—),博士研究生,主要从事河口海岸动力-沉积-地貌过程研究。E-mail:huangenm3@mail2.sysu.edu.cn

    通讯作者:

    贾良文(1966—),教授,主要从事河口海岸动力、地貌和沉积及海岸工程应用研究。E-mail:jialw@mail.sysu.edu.cn

  • 中图分类号: 

Study on sediment transport in a wave and tide dominated estuary: A case study of Moyang River estuary in western Guangdong Province

  • 摘要: 泥沙输运是河口海岸研究的基础问题,对河口地貌演变、生态环境和工程建设具有重要的科学意义和应用价值。本文以漠阳江河口为例,基于船载和坐底三角架实测的海流、波浪和含沙量数据,分析漠阳江河口定点剖面上悬沙的沿岸和垂岸的输运趋势并计算泥沙输运通量,探讨波潮型河口的泥沙输移机制与运移规律,主要发现包括:(1)洪季口门处受径流作用主控,输沙量随着流量的增大而增大,沿岸输沙与垂岸输沙在流量最大的小潮时期达到最大值,分别为111.9 g/m2/s和269.5 g/m2/s;洪季拦门沙处则受波浪与潮流共同控制,沿岸输沙在大小潮时期皆为沿岸向西输运,垂岸输沙在大潮时期由落潮流主导离岸输沙4.0 g/m2/s,小潮时期由波浪主导向岸输沙19.0 g/m2/s。(2)枯季拦门沙处受潮流和波浪主控,垂岸输沙以落潮流携沙向海输运为主,而沿岸输沙受波浪动力控制,在波生沿岸流作用下沿岸向东输沙;枯季拦门沙东侧同样受潮流和波浪主控,垂岸输沙在大潮时期为涨潮流主导携沙向岸运输,之后随着潮动力减弱转为离岸输运,沿岸输沙受波生沿岸流的影响沿岸向东输运。(3)洪季观测期间口门处向海输运显著,垂向上各水层流向一致;小潮期间出现水层流向分化,表层向海输运,底层向陆输运;拦门沙处大小潮时段垂向上各水层流向较为一致,但潮平均后大潮各水层向海输运,小潮各水层向岸输运,小潮期间受波浪作用明显,向岸输运占比达到79%。(4)漠阳江河口口门处在下泄径流与落潮流影响下以向海输沙为主,而口门外拦门沙处影响泥沙输运的最主要因素是潮流的向海输沙和波浪的沿岸输沙。
  • 图  1  (a)研究区域;(b)双捷站位置;(c)观测站位

    Fig.  1  (a) Study area; (b) Location of the Shuangjie station; (c) Observation station location.

    图  3  浊度与悬沙含量关系(直线为线性拟合结果)

    Fig.  3  The relationship between turbidity and suspended sediment concentration (the straight line represents the result of linear regression fitting).

    图  2  座底观测三脚架

    Fig.  2  Base observation tripod.

    图  4  洪季L1、L2站大、小潮流速剖面及垂向均值(黑色虚线)时间变化图(x轴0点代表观测周期起点时刻)

    Fig.  4  Velocity profiles of large and small tidal currents at L1 and L2 stations and time variations of the vertical mean value (black dashed line) in the flood season (0 point on the X-axis represents the starting point of the observation period )

    图  5  洪季L1、L2站大、小潮悬沙含量剖面及垂向均值(黑色虚线)时间变化图

    Fig.  5  Suspended sediment content profiles of large tides and neaps at L1 and L2 stations and temporal variation of vertical mean value (black dashed line) in flood season

    图  6  洪季潮平均输沙通量

    Fig.  6  Average sediment transport flux in flood season.

    图  7  洪季L1、L2站逐时平均垂岸输沙通量等值线图(x轴0点代表观测周期起点时刻,下同)

    Fig.  7  Contour map of hourly average vertical sediment transport flux of L1 and L2 stations in the flood season (point 0 on the x axis represents the starting point of the observation period, the same below).

    图  8  洪季L1、L2站逐时平均沿岸输沙通量等值线图(x轴0点代表观测周期起点时刻)

    Fig.  8  Contour map of hourly average alongshore sediment transport flux of L1 and L2 stations in the flood season.

    图  9  枯季K1、K2站逐时平均沿岸输沙通量图

    Fig.  9  Average hourly alongshore sediment transport fluxes at K1 and K2 stations in dry season.

    图  10  枯季K1、K2站逐时平均垂岸输沙通量图

    Fig.  10  Average hourly cross-shore sediment transport fluxes at K1 and K2 stations in dry season.

    图  11  (a)双捷站逐时流量图,红色部分为定点观测时间段; (b)大潮观测期间流量; (c)小潮观测期间流量

    Fig.  11  (a) Hourly discharge chart for Shuangjie station, the red part is the fixed point observation period; (b) Discharge during the spring tide observation period; (c) Discharge during the neap tide observation period.

    图  12  (a)大潮逐时平均沿岸输沙通量; (b) 小潮逐时平均沿岸输沙通量; (c) 大潮逐时平均垂岸输沙通量; (d) 小潮逐时平均垂岸输沙通量

    Fig.  12  (a) Hourly average alongshore sediment transport flux during the spring tide; (b) Hourly average alongshore sediment transport flux during the neap tide; (c) Hourly average cross-shore sediment transport flux during the spring tide; (d) Hourly average cross-shore sediment transport flux during the neap tide.

    图  13  (a)洪季L2站逐时有效波高,红色部分为定点观测时间段; (b) 枯季K1站逐时有效波高; (c) 枯季K2站逐时有效波高

    Fig.  13  (a) Significant wave height for station L2 during the flood season, with the red part indicating the observation period; (b) Significant wave height for station K1 during the dry season; (c) Significant wave height for station K2 during the dry season.

    图  14  漠阳江河口悬沙输移模式示意图

    Fig.  14  Schematic diagram of sediment transport model in Moyang River estuary.

    表  1  观测仪器参数设置

    Tab.  1  Parameter Settings of observation instruments.

    观测系统 测量仪器 参数设置 观测项目
    船载观测 OBS-3A 整点下放,采样频率1 Hz 剖面浊度、深度
    ADCP(Workhorse II Monitor ADCP 1200 kHz) 整点开测,层厚0.25 m,
    采样频率0.1 Hz,入水深度
    0.5 m,盲区0.05 m
    剖面流速
    座底观测 OBS-3A 采样间隔10 s,
    采样时间10 s
    单点浊度、深度
    AWAC(1 MHz) 采样频率2 Hz,采样间隔
    10 min,采样时间512 s,
    距底高度1.2 m,盲区0.4 m
    单点波高、波向
    ADV (Vector
    6 MHz)
    采样频率32 Hz,采样间隔
    10 min,采样时间1 min,
    距底高度0.3 m
    单点三维高
    频流速
    下载: 导出CSV

    表  2  各动力项潮周期输沙量和方向(垂岸方向正值表示垂岸向陆,沿岸方向正值表示沿岸向东,单位:g/m2/s)

    Tab.  2  Tidal-averaged suspended sediment flux and direction of each dynamic term (positive value in the cross-shore direction indicates movement towards the land, and a positive value in the alongshore direction signifies eastward transport along the coast, Unit: g/m2/s)

    站位及
    方向
    T1 T2 T3 T4 T5 平流输
    沙项
    潮流输
    沙项
    总输沙
    L1大潮垂岸输沙 8.67 12.75 5.68 –21.58 –14.40 21.43 –30.30 –8.87
    L1大潮沿岸输沙 20.55 21.20 19.49 22.71 21.63 41.75 63.84 105.59
    L1小潮垂岸输沙 –34.40 –46.82 –47.52 –46.94 –43.44 –81.21 –137.90 –219.11
    L1小潮沿岸输沙 14.23 18.92 19.21 19.9 18.47 33.15 57.58 90.73
    L2大潮垂岸输沙 –0.62 –0.60 –0.63 –0.52 –0.44 –1.22 –1.59 –2.81
    L2大潮沿岸输沙 0.48 0.40 0.38 –0.37 –0.16 0.89 –0.14 0.75
    L2小潮垂岸输沙 2.65 2.64 2.50 1.75 1.93 5.29 6.17 11.48
    L2小潮沿岸输沙 –0.87 –1.52 –1.05 –0.24 –0.68 –2.39 –1.97 –4.36
    下载: 导出CSV
  • [1] Nienhuis J H, Ashton A D, Roos P C, et al. Wave reworking of abandoned deltas[J]. Geophysical Research Letters, 2013, 40(22): 5899−5903. doi: 10.1002/2013GL058231
    [2] Mayerle R, Narayanan R, Etri T, et al. A case study of sediment transport in the Paranagua Estuary Complex in Brazil[J]. Ocean Engineering, 2015, 106: 161−174.
    [3] Cheng P, Li M, Li Y. Generation of an estuarine sediment plume by a tropical storm[J]. Journal of Geophysical Research: Oceans, 2013, 118(2): 856−868. doi: 10.1002/jgrc.20070
    [4] Du J B, Shen J. Transport of riverine material from multiple rivers in the Chesapeake Bay: important control of estuarine circulation on the material distribution[J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(11): 2998−3013. doi: 10.1002/2016JG003707
    [5] Harris C K, Sherwood C R, Signell R P, et al. Sediment dispersal in the northwestern Adriatic Sea[J]. Journal of Geophysical Research: Oceans, 2008, 113(C11): C11S03.
    [6] Bever A J, Harris C K, Sherwood C R, et al. Deposition and flux of sediment from the Po River, Italy: an idealized and wintertime numerical modeling study[J]. Marine Geology, 2009, 260(1/4): 69−80.
    [7] Xue Z, Liu J P, DeMaster D, et al. Late Holocene evolution of the Mekong subaqueous delta, southern Vietnam[J]. Marine Geology, 2010, 269(1/2): 46−60.
    [8] Nowacki D J, Ogston A S, Nittrouer C A, et al. Sediment dynamics in the lower Mekong River: transition from tidal river to estuary[J]. Journal of Geophysical Research: Oceans, 2015, 120(9): 6363−6383. doi: 10.1002/2015JC010754
    [9] Passalacqua P, Lanzoni S, Paola C, et al. Geomorphic signatures of deltaic processes and vegetation: the Ganges-Brahmaputra-Jamuna case study[J]. Journal of Geophysical Research: Earth Surface, 2013, 118(3): 1838−1849. doi: 10.1002/jgrf.20128
    [10] Higgins S A, Overeem I, Steckler M S, et al. InSAR measurements of compaction and subsidence in the Ganges-Brahmaputra Delta, Bangladesh[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(8): 1768−1781. doi: 10.1002/2014JF003117
    [11] Heise B, Harff J, Ren J, et al. Patterns of potential sediment erosion in the Pearl River Estuary[J]. Journal of Marine Systems, 2010, 82: S62−S82. doi: 10.1016/j.jmarsys.2010.02.006
    [12] Hu Jiatang, Li Shiyu, Geng Bingxu. Modeling the mass flux budgets of water and suspended sediments for the river network and estuary in the Pearl River Delta, China[J]. Journal of Marine Systems, 2011, 88(2): 252−266. doi: 10.1016/j.jmarsys.2011.05.002
    [13] 潘存鸿, 曾剑, 唐子文, 等. 钱塘江河口泥沙特性及河床冲淤研究[J]. 水利水运工程学报, 2013(1): 1−7. doi: 10.3969/j.issn.1009-640X.2013.01.001

    Pan Cunhong, Zeng Jian, Tang Ziwen, et al. A study of sediment characteristics and riverbed erosion/deposition in Qiantang estuary[J]. Hydro-Science and Engineering, 2013(1): 1−7. doi: 10.3969/j.issn.1009-640X.2013.01.001
    [14] 李谊纯, 董德信, 王一兵. 北仑河口及其邻近海域物质输运滞留时间研究[J]. 广西师范大学学报: 自然科学版, 2015, 33(2): 56−63.

    Li Yichun, Dong Dexin, Wang Yibing. Transport time scale in the Beilun River estuary and its adjacent area[J]. Journal of Guangxi Normal University (Natural Science Edition), 2015, 33(2): 56−63.
    [15] 董德信, 陈波, 李谊纯, 等. 基于平面二维潮流模型的北仑河口悬沙输运与底床冲淤数值模拟[J]. 热带海洋学报, 2013, 32(6): 16−21. doi: 10.3969/j.issn.1009-5470.2013.06.003

    Dong Dexin, Chen Bo, Li Yichun, et al. Numerical simulation of suspended sediment transport and seabed change in the Beilun Estuary based on a two-dimensional tidal current model[J]. Journal of Tropical Oceanography, 2013, 32(6): 16−21. doi: 10.3969/j.issn.1009-5470.2013.06.003
    [16] 李爽, 詹文欢, 姚衍桃. 漠阳江入海口海岸线分维及其机制分析[J]. 海洋通报, 2019, 38(2): 210−216. doi: 10.11840/j.issn.1001-6392.2019.02.012

    Li Shuang, Zhan Wenhuan, Yao Yantao. Analysis of fractal dimension mechanism in coastline of the Moyang River Estuary[J]. Marine Science Bulletin, 2019, 38(2): 210−216. doi: 10.11840/j.issn.1001-6392.2019.02.012
    [17] 周建刚. 双捷水文站河床冲淤情况分析[J]. 大众科技, 2015, 17(5): 41−43. doi: 10.3969/j.issn.1008-1151.2015.05.016

    Zhou Jiangang. Analysis on riverbed scouring and siltation of Shuangjie hydrological station[J]. Popular Science & Technology, 2015, 17(5): 41−43. doi: 10.3969/j.issn.1008-1151.2015.05.016
    [18] 赵亮, 余丹亚, 林文升. 漠阳江下游河网区主要航道维护水深分析及建议[J]. 珠江水运, 2023(21): 109−111.

    Zhao Liang, Yu Danya, Lin Wensheng. Analysis and suggestion on maintenance water depth of main channel in river network area of lower reaches of Moyang River[J]. Pearl River Water Transport, 2023(21): 109−111. (查阅网上资料, 未找到对应的英文翻译, 请确认)
    [19] 刘强, 汤民强, 贺惠忠, 等. 广东阳西沙扒海域埋藏古河道沉积特征[J]. 吉林大学学报(地球科学版), 2022, 52(6): 1791−1799.

    Liu Qiang, Tang Minqiang, He Huizhong, et al. Sedimentary characteristics of buried ancient channels in Shapa area of Yangxi, Guangdong Province[J]. Journal of Jilin University (Earth Science Edition), 2022, 52(6): 1791−1799.
    [20] 刘润, 李志强, 朱道恒, 等. 风暴后海陵岛金沙滩恢复期床面高度变化分析[J]. 海洋地质前沿, 2024, 40(8): 22−31.

    Liu Run, Li Zhiqiang, Zhu Daoheng, et al. Analysis of bed level elevation during beach recovery after storm on Golden Beach, Hailing Island, Guangdong[J]. Marine Geology Frontiers, 2024, 40(8): 22−31.
    [21] Dyer K R. The salt balance in stratified estuaries[J]. Estuarine and Coastal Marine Science, 1974, 2(3): 273−281. doi: 10.1016/0302-3524(74)90017-6
    [22] Galloway W E. Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems[J]. Deltas: Models for Exploration, 1975: 88−98. (查阅网上资料, 未找到对应的卷期号信息, 请确认)(查阅网上资料, 请核对文献类型及格式)
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  32
  • HTML全文浏览量:  22
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-18
  • 修回日期:  2024-10-28
  • 网络出版日期:  2024-11-15

目录

    /

    返回文章
    返回