Effects of water depth on photosynthesis, nutrient composition, and nutrition, and nitrogen and phosphorus uptake of Sargassum horneri
-
摘要: 铜藻(Sargassum horneri)具有较好的经济性状和价值,其养殖逐渐受到人们的重视。但目前对于其适宜养殖水深尚不清楚,并且对处于不同养殖水深铜藻的生理特征和生态功能也不明确。根据不同水深的光照强度,比较了不同水深(0.5 m和2 m)铜藻的初级生产力、营养盐吸收能力以及藻体营养组成。结果显示,不同水深的光照强度差异显著(P<0.05),水深引起的光照强度差异与铜藻的初级生产力显著相关。生长在水深0.5 m处(上层)铜藻的总生产力显著高于水深2 m处(下层)的铜藻(P<0.05),上层铜藻表现出更高的初级生产力和固碳能力。光照条件下,上层铜藻对
${{\rm {NH}}_4^+} $ 、${{\rm {PO}}_4^{3-}} $ 的吸收效果显著优于下层铜藻(P<0.05),在净化富营养化水体,调控水域生态平衡方面有很好的潜力;但上层铜藻对${{\rm {NO}}_3^-} $ 、${{\rm {NO}}_2^-} $ 的吸收量却显著低于下层铜藻(P>0.05),即说明铜藻会出现一定的强光抑制现象,影响铜藻对硝态氮和亚硝态氮的吸收。不同水深铜藻的水分含量在71%~75%之间,灰分含量在20%~23%之间,总脂质含量在6%~8%之间,粗蛋白含量在8%~10%之间,两个水深处理组间的营养组成差别不大(P>0.05)。研究表明,适当提高养殖水层,铜藻可以达到更高的生产力和营养盐吸收能力,而不同水层铜藻的营养组成也会保持相对稳定。文章结果对自然海区人工养殖铜藻的技术研发以及海区生态环境保护具有重要意义。Abstract:Sargassum horneri has good economic traits and value, and its culture is gradually being emphasized. However, the suitable water depth for culture is still unclear, and the physiological characteristics and ecological functions of Culex pipiens in different water depths are not clear. In this paper, we compared the primary productivity, nutrient uptake capacity, and algal trophic composition of S. horneri at different water depths (0.5 m and 2 m) based on light intensity in different water depths. The results showed that light intensity varied significantly (P < 0.05) among water depths and that the difference in light intensity due to water depth was significantly correlated with the primary productivity of S. horneri The total productivity of S. horneri grown at 0.5 m water depth (upper layer) was significantly higher than that of S. horneri grown at 2 m water depth (lower layer) (P < 0.05), and S. horneri in the upper layer showed higher primary productivity and carbon sequestration capacity. The uptake of ${{\rm {NH}}_4^+} $ and${{\rm {PO}}_4^{3-}} $ by the upper layer of S. horneri was significantly better than that of the lower layer of S. horneri under the light conditions (P<0.05), which has a good potential in purifying the eutrophic water and regulating the ecological balance of the watershed; However, the uptake of${{\rm {NO}}_3^-} $ and${{\rm {NO}}_2^-} $ by the upper layer of S. horneri is significantly lower than the lower layer of S. horneri (P>0.05), it indicates that some strong light inhibition phenomenon occurs in S. horneri which affects the uptake of${{\rm {NO}}_3^-} $ and${{\rm {NO}}_2^-} $ by S. horneri. The moisture content of S. horneri at different water depths ranged from 71% to 75%, the ash content from 20% to 23%, the total lipids content from 6% to 8%, and the crude protein content from 8% to 10%. Nutrient composition did not differ significantly (P > 0.05) between the two water depth treatment groups. Studies have shown that by appropriately raising the culture layer, S. horneri can achieve higher productivity and nutrient uptake capacity, while the nutrient composition of S. horneri in the different water layers would remain relatively stable. This study is of great significance for the technological development and upgrading of the artificial culture of S. horneri in natural sea areas as well as for the ecological environmental protection of sea areas.-
Key words:
- Sargassum horneri /
- water depth /
- nutrients /
- body composition
-
图 1 0.5 m和2 m水深铜藻呼吸量、净生产力和总生产力
注:图中的U group、L group是两个处理组,分别为处于0.5 m、2 m水深的铜藻
Fig. 1 Respiration、Net primary productivity and Gross primary productivity of S.horneri at 0.5 m and 2 m depth
Note: The U and L groups in the figure are the two treatment groups, the S.horneri at 0.5 m and 2 m water depth, respectively.
图 2 上层和下层铜藻光照12 h和黑暗12 h对
${{\rm {PO}}_4^{3-}} $ 的吸收量注:图中的U group、L group是两个处理组,分别为处于0.5 m、2 m水深的铜藻
Fig. 2 Uptake of
${{\rm {PO}}_4^{3-}} $ by S.horneri at upper and lower after 12 h of light and 12 h of darknessNote: The U and L groups in the figure are the two treatment groups, the S.horneri at 0.5 m and 2 m water depth, respectively.
图 3 上层和下层铜藻光照12 h和黑暗12 h对
${{\rm {NH}}_4^+} $ 的吸收量注:图中的U group、L group是两个处理组,分别为处于0.5 m、2 m水深的铜藻
Fig. 3 Uptake of
${{\rm {NH}}_4^+} $ by S.horneri at upper and lower after 12 h of light and 12 h of darknessNote: The U and L groups in the figure are the two treatment groups, the S.horneri at 0.5 m and 2 m water depth, respectively.
图 4 上层和下层铜藻光照12 h和黑暗12 h对
$ {{\rm {NO}}_3^-} $ 的吸收量注:图中的U group、L group是两个处理组,分别为处于0.5 m、2 m水深的铜藻
Fig. 4 Uptake of
$ {{\rm {NO}}_3^-} $ by S.horneri at upper and lower after 12 h of light and 12 h of darknessNote: The U and L groups in the figure are the two treatment groups, the S.horneri at 0.5 m and 2 m water depth, respectively.
图 5 上层和下层铜藻光照12 h和黑暗12 h对
${{\rm {NO}}_2^-} $ 的吸收量注:图中的U group、L group是两个处理组,分别为处于0.5 m、2 m水深的铜藻
Fig. 5 Uptake of
${{\rm {NO}}_2^-} $ by S.horneri at upper and lower after 12 h of light and 12 h of darknessNote: The U and L groups in the figure are the two treatment groups, the S.horneri at 0.5 m and 2 m water depth, respectively.
表 1 现场不同水深的环境因子(Mean±SD)
Tab. 1 Environmental factors at different water depths in the field
组别
Treatments温度(℃)
Temperature溶解氧(mg·L−1)
Dissolved oxygen盐度(‰)
SalinitypH值
pHU Group 26.16±0.09 6.93±0.07 30.80±0.01 7.98±0.03 L Group 25.62±0.13 6.66±0.12 30.16±0.13 7.87±0.05 注:图中的U group、L group是两个处理组,分别为处于0.5 m、2 m水深的铜藻 -
[1] 张鹏, 蔡一凡, 王铁杆, 等. 浙江沿海不同地理群体铜藻Sargassum horneri的AFLP分析[J]. 浙江农业学报, 2015, 27(9): 1586−1592. doi: 10.3969/j.issn.1004-1524.2015.09.16Zhang Peng, Cai Yifan, Wang Tiegan, et al. AFLP analysis of different geographic populations of Sargassum horneri along the coast of Zhejiang Province[J]. Acta Agriculturae Zhejiangensis, 2015, 27(9): 1586−1592. doi: 10.3969/j.issn.1004-1524.2015.09.16 [2] 黄冰心, 丁兰平, 秦松, 等. 铜藻的分类地位、生物地理分布以及2016年底黄海漂浮铜藻源头的初步分析[J]. 海洋与湖沼, 2018, 49(1): 214−223.Huang Bingxin, Ding Lanping, Qin Song, et al. The taxonomical status and biogeographical distribution of Sargassum horneri with the origin analysis of its drifting population in the end of 2016 at the western Yellow Sea[J]. Oceanologia et Limnologia Sinica, 2018, 49(1): 214−223. [3] 王晶. 发酵饲料中石莼和脱胶海带替代马尾藻对刺参生长、消化酶活性及体成分的影响[D]. 大连: 大连海洋大学, 2023.Wang Jing. Effects of replacing Sargassum sp. with Ulva lactuca and degummed Laminaria japonica in fermented feed on the growth, digestive enzymes, and body composition of sea cucumber (Apostichopus japonicus)[D]. Dalian: Dalian Ocean University, 2023. [4] 刘雯, 车心怡, 马志超, 等. 铜藻岩藻聚糖硫酸酯的结构组成及降血脂作用[J]. 大连海洋大学学报, 2023, 38(2): 323−330.Liu Wen, Che Xinyi, Ma Zhichao, et al. Structural composition and hypolipidemic effect of fucoidan from Sargassum horneri[J]. Journal of Dalian Ocean University, 2023, 38(2): 323−330. [5] 王作芸, 赵学武. 铜藻的褐藻糖胶、褐藻淀粉和褐藻胶的分离及提纯[J]. 水产学报, 1985, 9(1): 71−77.Wang Zuoyun, Zhao Xuewu. Extraction and isolation of alginic acid, laminaran and fucoidan from Sargassum horneri (Turn) C. Ag[J]. Journal of Fisheries of China, 1985, 9(1): 71−77. [6] 何袅袅, 陈雅鑫, 蔡树芸, 等. 铜藻多酚的分离纯化及抗氧化活性研究[J]. 食品工业科技, 2023, 44(3): 183−191.HE Niaoniao, Chen Yaxin, Cai Shuyun, et al. Separation and purification and antioxidant activity of polyphenols from Sargassum horneri[J]. Science and Technology of Food Industry, 2023, 44(3): 183−191. [7] 郑丽杰, 缪晓冬, 韩威, 等. 铜藻主要化学成分分析及抗氧化活性评价[J]. 食品工业科技, 2020, 41(22): 232−239.Zheng Lijie, Miao Xiaodong, Han Wei, et al. Analysis of main chemical components and evaluation of antioxidant activity of Sargassum horneri[J]. Science and Technology of Food Industry, 2020, 41(22): 232−239. [8] 郑海羽, 饶道专, 陈高峰, 等. 保护性开发南麂列岛铜藻Sargassaum horneri(Turn. )Ag. 资源的思考[J]. 现代渔业信息, 2008, 23(10): 25−26.Zheng Haiyu, Rao Daozhuan, Chen Gaofeng, et al. Consideration on protective exploitation of Sargassaum horneri(Turn. )Ag resource around Nanji Islands[J]. Modern Fisheries Information, 2008, 23(10): 25−26. [9] 毕远新, 张亚洲, 丰美萍, 等. 渔山列岛海藻场空间分布格局及成因分析[J]. 浙江海洋大学学报(自然科学版), 2017, 36(5): 373−378.Bi Yuanxin, Zhang Yazhou, Feng Meiping, et al. Spatial distribution pattern of seaweed bed and its relationship with environmental factors around Yushan Archipelago[J]. Journal of Zhejiang Ocean University (Natural Science), 2017, 36(5): 373−378. [10] 卓丹琪, 张雪楠, 李雨晴, 等. 铜藻褐藻聚糖硫酸酯的分离纯化、结构组成及保肝护肝作用[J]. 大连海洋大学学报, 2022, 37(2): 295−303.Zhuo Danqi, Zhang Xuenan, Li Yuqing, et al. Purification, structural characteristics and hepatoprotective effects of fucoidan from seaweed Sargassum horneri[J]. Journal of Dalian Ocean University, 2022, 37(2): 295−303. [11] Hu Fangyuan, Yang Mingfang, Ding Peng, et al. Effects of the brown algae Sargassum horneri and Saccharina japonica on survival, growth and resistance of small sea urchins Strongylocentrotus intermedius[J]. Scientific Reports, 2020, 10(1): 12495, doi: 10.1038/s41598-020-69435-8 [12] 孙建璋, 陈万东, 庄定根, 等. 中国南麂列岛铜藻Sargassum horneri实地生态学的初步研究[J]. 南方水产, 2008, 4(3): 58−63.Sun Jianzhang, Chen Wandong, Zhuang Dinggen, et al. In situ ecological studies of the subtidal brown alga Sargassum horneri at Nanji island of China[J]. South China Fisheries Science, 2008, 4(3): 58−63. [13] 孙建璋, 庄定根, 孙庆海, 等. 铜藻人工栽培的初步研究[J]. 南方水产, 2009, 5(6): 41−46.Sun Jianzhang, Zhuang Dinggen, Sun Qinghai, et al. Artificial cultivation trials of Sargassum horneri at Nanji islands of China[J]. South China Fisheries Science, 2009, 5(6): 41−46. [14] 栾青, 吕芳, 吴海一, 等. 不同培养条件对铜藻生长和营养组分的影响[J]. 渔业科学进展, 2019, 40(4): 123−130.Luan Qing, Lü Fang, Wu Haiyi, et al. Effects of culture conditions on nutrient composition of Sargassum horneri[J]. Progress in Fishery Sciences, 2019, 40(4): 123−130. [15] 孙威, 吴文广, 刘毅, 等. 温度、光照强度和光照周期对铜藻有机碳释放速率的影响[J]. 渔业科学进展, 2024, 45(3): 46−54.Sun Wei, Wu Wenguang, Liu Yi, et al. The effects of temperature, light intensity, and photoperiod on the organic carbon release rate of Sargassum horneri seaweed[J]. Progress in Fishery Sciences, 2024, 45(3): 46−54. [16] 赵鑫, 刘诗婕, 冯雪, 等. 铜藻光合荧光特性及其对光强与营养盐的响应[J]. 海洋渔业, 2023, 45(3): 1−21. (查阅网上资料, 未找到对应的卷期页码信息, 请确认) Zhao Xin, Liu Shijie, Feng Xue, et al. Photosynthetic fluorescence characteristics and their response to light intensity and nutrient in Sargassum horneri[J]. Marine Fisheries, 2023, 45(3): 1−21. [17] 杨安强, 史定刚, 陈少波, 等. 高CO2条件下温度和光照对铜藻吸收N、P的短期影响[J]. 浙江农业科学, 2017, 58(2): 303−307.Yang Anqiang, Shi Dinggang, Chen Shaobo, et al. Short-term effects of temperature and light on N、P uptake by Sargassum horneri under high CO2 conditions[J]. Journal of Zhejiang Agricultural Sciences, 2017, 58(2): 303−307. (查阅网上资料, 未找到对应的英文翻译, 请确认) [18] 李启升, 黄强, 李永吉, 等. 水深对沉水植物苦草(Vallisneria natans)和穗花狐尾藻(Myriophyllum spicatum)生长的影响[J]. 湖泊科学, 2019, 31(4): 1045−1054. doi: 10.18307/2019.0404Li Qisheng, Huang Qiang, Li Yongji, et al. Effects of water depth on growth of submerged macrophytes Vallisneria natans and Myriophyllum spicatum[J]. Journal of Lake Sciences, 2019, 31(4): 1045−1054. doi: 10.18307/2019.0404 [19] 马建中, 黄和, 贾利, 等. 水深对立体种植沉水植物污染物去除效果的影响[J]. 能源环境保护, 2021, 35(5): 37−42. doi: 10.3969/j.issn.1006-8759.2021.05.006Ma Jianzhong, Huang He, Jia Li, et al. Effect of water level on the removal of pollutants by submerged plants planted in three dimensions[J]. Energy Environmental Protection, 2021, 35(5): 37−42. doi: 10.3969/j.issn.1006-8759.2021.05.006 [20] 何玉实, 王筱平, 何彤慧, 等. 水深、光照对三种沉水植物生长特征及除氮效果的影响[J]. 北方园艺, 2022(22): 81−90.He Yushi, Wang Xiaoping, He Tonghui, et al. Effects of water depth and light on growth characteristics and nitrogen removal efficiency of three submerged plants[J]. Northern Horticulture, 2022(22): 81−90. [21] Beklioglu M, Altinayar G, Tan C O. Water level control over submerged macrophyte development in five shallow lakes of Mediterranean Turkey[J]. Archiv für Hydrobiologie, 2006, 166(4): 535−556, doi: 10.1127/0003-9136/2006/0166-0535 [22] 何亮, 陈晓希, 李威, 等. 洱海4种沉水植物叶片的光合色素组成及C、N、P化学计量特征对水深的响应[J]. 湖泊科学, 2018, 30(5): 1413−1419. doi: 10.18307/2018.0522He Liang, Chen Xiaoxi, Li Wei, et al. Leaf carbon, nitrogen and phosphorus stoichiometric characteristics and photosynthetic pigments composition of four submerged macrophytes in response to various water depth in Lake Erhai, China[J]. Journal of Lake Sciences, 2018, 30(5): 1413−1419. doi: 10.18307/2018.0522 [23] Havens K E, Sharfstein B, Brady M A, et al. Recovery of submerged plants from high water stress in a large subtropical lake in Florida, USA[J]. Aquatic Botany, 2004, 78(1): 67−82, doi: 10.1016/j.aquabot.2003.09.005 [24] Li Lei, Bonser S P, Lan Zhichun, et al. Water depth affects reproductive allocation and reproductive allometry in the submerged macrophyte Vallisneria natans[J]. Scientific Reports, 2017, 7(1): 16842, doi: 10.1038/s41598-017-16719-1 [25] 田玉清, 陈欣, 单航, 等. 洱海海菜花(Ottelia acuminata)的分布及水深适应性[J]. 应用与环境生物学报, 2023, 29(5): 1142−1148.Tian Yuqing, Chen Xin, Shan Hang, et al. Distribution and adaptation of Ottelia acuminata to water depths in Erhai Lake[J]. Chinese Journal of Applied and Environmental Biology, 2023, 29(5): 1142−1148. [26] 王磊, 胡效卿, 张卓伦, 等. 不同水深和基质下苦草(Vallisneria natans)的生理生态适应策略[J]. 生态学杂志, 2021, 40(8): 2421−2430.Wang Lei, Hu Xiaoqing, Zhang Zhuolun, et al. Physiological and ecological adaptation strategies of Vallisneria natans to different water depths and sediments[J]. Chinese Journal of Ecology, 2021, 40(8): 2421−2430. [27] 马牧源, 崔丽娟, 张曼胤, 等. 白洋淀附着藻类的初级生产力及其与水质的关系[J]. 生态学报, 2018, 38(2): 443−456.Ma Muyuan, Cui Lijuan, Zhang Manyin, et al. Primary production of periphyton and their relationship to water quality in Baiyangdian Lake, China[J]. Acta Ecologica Sinica, 2018, 38(2): 443−456. [28] 张宝玉, 李夜光, 李中奎, 等. 温度、光照强度和pH对雨生红球藻光合作用和生长速率的影响[J]. 海洋与湖沼, 2003, 34(5): 558−565. doi: 10.3321/j.issn:0029-814X.2003.05.011Zhang Baoyu, Li Yeguang, Li Zhongkui, et al. Effects of temperature, light intensity and pH on photosynthesis and growth rate of Haematococcus pluvialis[J]. Oceanologia et Limnologia Sinica, 2003, 34(5): 558−565. doi: 10.3321/j.issn:0029-814X.2003.05.011 [29] 祁峰, 李晓东, 赵艳红, 等. 盐度、光照度和温度对漂浮刚毛藻光合作用的影响[J]. 大连水产学院学报, 2003, 23(5): 382−386.Qi Feng, Li Xiaodong, Zhao Yanhong, et al. Effects of salinity, light intensity and temperature on photosynthesis in alga Cladophera expansal[J]. Journal of Dalian Fisheries University, 2008, 23(5): 382−386. [30] 潘光华, 高山, 王广策, 等. 温度和光照对孔石莼光合作用的影响[J]. 海洋科学, 2011, 35(9): 14−17.Pan Guanghua, Gao Shan, Wang Guangce, et al. Effects of temperature and light on photosynthesis of Ulva pertus[J]. Marine Sciences, 2011, 35(9): 14−17. [31] 张海春, 李春杰, 陈雪初, 等. 光照度对水柱中斜生栅藻生长的影响[J]. 环境科学与技术, 2010, 33(4): 53−56. doi: 10.3969/j.issn.1003-6504.2010.04.013Zhang Haichun, Li Chunjie, Chen Xuechu, et al. Influence of light intensity in water column on growth of Scenedesmus obliquus[J]. Environmental Science & Technology, 2010, 33(4): 53−56. doi: 10.3969/j.issn.1003-6504.2010.04.013 [32] 毛玉泽, 杨红生, 周毅, 等. 龙须菜(Gracilaria lemaneiformis)的生长、光合作用及其对扇贝排泄氮磷的吸收[J]. 生态学报, 2006, 26(10): 3225−3231. doi: 10.3321/j.issn:1000-0933.2006.10.009Mao Yuze, Yang Hongsheng, Zhou Yi, et al. Studies on growth and photosynthesis characteristics of Gracilaria lemaneiformis and its capacity to uptake ammonium and phosphorus from scallop excretion[J]. Acta Ecologica Sinica, 2006, 26(10): 3225−3231. doi: 10.3321/j.issn:1000-0933.2006.10.009 [33] 钟逸云, 杨蕴琪, 郜晓峰, 等. 盐度、温度和光照强度对针叶蕨藻的生长及光合活性的影响[J]. 热带亚热带植物学报, 2021, 29(6): 626−633. doi: 10.11926/jtsb.4378Zhong Yiyun, Yang Yunqi, Gao Xiaofeng, et al. Effects of salinity, temperature and light intensity on growth and photosynthetic activity of Caulerpa sertularioides[J]. Journal of Tropical and Subtropical Botany, 2021, 29(6): 626−633. doi: 10.11926/jtsb.4378 [34] 翟水晶, 胡维平, 邓建才, 等. 不同水深和底质对太湖马来眼子菜(Potamogeton malaianus)生长的影响[J]. 生态学报, 2008, 28(7): 3035−3041.Zhai Shuijing, Hu Weiping, Deng Jiancai, et al. Effects of different water depths and sediments on Potamogeton malaianus in Lake Taihu[J]. Acta Ecologica Sinica, 2008, 28(7): 3035−3041. [35] 季高华, 徐后涛, 王丽卿, 等. 不同水层光照强度对4种沉水植物生长的影响[J]. 环境污染与防治, 2011, 33(10): 29−32. doi: 10.3969/j.issn.1001-3865.2011.10.007Ji Gaohua, Xu Houtao, Wang Liqing, et al. Effects of light intensity at different depth of water on growth of 4 submerged plants[J]. Environmental Pollution & Control, 2011, 33(10): 29−32. doi: 10.3969/j.issn.1001-3865.2011.10.007 [36] 李秀辰, 崔引安, 雷衍之. 主要环境因子对孔石莼净水作用的影响(I)对氨氮吸收的影响[J]. 农业工程学报, 1997, 13(S1): 192−195.Li Xiuchen, Cui Yin’an, Lei Yanzhi. The effect of primary environmental factors on the purification efficiency of ulva pertusa kjellman Ⅰ: the effect on the uptake rate of ammonium by ulva P. K.[J]. Transactions of the CSAE, 1997, 13(S1): 192−195. [37] 许忠能, 林小涛, 林继辉, 等. 营养盐因子对细基江蓠繁枝变种氮、磷吸收速率的影响[J]. 生态学报, 2002, 22(3): 366−374. doi: 10.3321/j.issn:1000-0933.2002.03.012Xu Zhongneng, Lin Xiaotao, Lin Jihui, et al. The effects of nutrient availability on the uptake of nitrogen and phosphorus by Gracilaria tenuistipitata var. liui Zhang et Xia[J]. Acta Ecologica Sinica, 2002, 22(3): 366−374. doi: 10.3321/j.issn:1000-0933.2002.03.012 [38] 钱鲁闽, 徐永健, 焦念志. 环境因子对龙须菜和菊花心江蓠N、P吸收速率的影响[J]. 中国水产科学, 2006, 13(2): 257−262. doi: 10.3321/j.issn:1005-8737.2006.02.015Qian Lumin, Xu Yongjian, Jiao Nianzhi. Effects of environmental factors on uptake of nitrogen and phosphorus by Gracilaria lemaneiformis and G. lichevoides[J]. Journal of Fishery Sciences of China, 2006, 13(2): 257−262. doi: 10.3321/j.issn:1005-8737.2006.02.015 [39] Su Yanyan. Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment[J]. Science of the Total Environment, 2021, 762: 144590, doi: 10.1016/j.scitotenv.2020.144590 [40] 徐森, 赵振良, 孙桂清, 等. 三种大型经济海藻对氮、磷营养盐的消除研究[J]. 科学养鱼, 2016, 38(4): 52−53.Xu Sen, Zhao Zhenliang, Sun Guiqing, et al. Studies on the elimination of nitrogen and phosphorus nutrient salts by three macroeconomic seaweeds[J]. Scientific Fish Farming, 2016, 38(4): 52−53. (查阅网上资料, 未找到对应的英文翻译, 请确认) [41] 潘志恒, 鲁敏, 曹煜成, 等. 3种微藻对海水集约化对虾养殖尾水氮磷的去除效果[J]. 水生态学杂志, 2023, 44(5): 149−155.Pan Zhiheng, Lu Min, Cao Yucheng, et al. Comparison of three microalgae for removing nitrogen and phosphorus from the tail waters of intensive seawater shrimp aquaculture[J]. Journal of Hydroecology, 2023, 44(5): 149−155. [42] 董双林, 刘静雯. 海藻营养代谢研究进展——海藻营养代谢的调节[J]. 青岛海洋大学学报, 2001, 31(1): 21−28.Dong Shuanglin, Liu Jingwen. Advance in the studies on nutrient metabolism of seaweeds[J]. Journal of Ocean University of Qingdao, 2001, 31(1): 21−28. [43] Weich R G, Granéli E. Extracellular alkaline phosphatase activity in Ulva lactuca L.[J]. Journal of Experimental Marine Biology and Ecology, 1989, 129(1): 33−44, doi: 10.1016/0022-0981(89)90061-0 [44] 刘长发, 张泽宇, 雷衍之. 盐度、光照和营养盐对孔石莼(Ulva pertusa)光合作用的影响[J]. 生态学报, 2001, 21(5): 795−798. doi: 10.3321/j.issn:1000-0933.2001.05.016Liu Changfa, Zhang Zeyu, Lei Yanzhi. Effects of salinity, light and nutrients on photosynthesis of sterile Ulva pertusa[J]. Acta Ecologica Sinica, 2001, 21(5): 795−798. doi: 10.3321/j.issn:1000-0933.2001.05.016 [45] 张永正, 王萍, 桂福坤, 等. 石莼、铁钉菜和蜈蚣藻对氮源利用的研究[J]. 海洋环境科学, 2012, 31(3): 341−345. doi: 10.3969/j.issn.1007-6336.2012.03.008Zhang Yongzheng, Wang Ping, Gui Fukun, et al. Utilization of nitrogen of Ulva lactuca, Ishigefoliaceaokamurai and Grateloupia filicina[J]. Marine Environmental Science, 2012, 31(3): 341−345. doi: 10.3969/j.issn.1007-6336.2012.03.008 [46] 荆玉祥, 匡延云, 李德葆. 植物分子生物学[M]. 北京: 科学出版社, 1995: 102−114.Jing Yuxiang, Kuang Yanyun, Li Derong. Plant Molecular Biology[M]. Beijing: Science Press, 1995: 102−114. (查阅网上资料, 未找到对应的英文翻译, 请确认) [47] 包杰, 田相利, 董双林, 等. 温度、盐度和光照强度对鼠尾藻氮、磷吸收的影响[J]. 中国水产科学, 2008, 15(2): 293−300. doi: 10.3321/j.issn:1005-8737.2008.02.013Bao Jie, Tian Xiangli, Dong Shuanglin, et al. Effect of temperature, salinity and light intensity on nitrogen and phosphorus uptake by Sargassum thunbergii[J]. Journal of Fishery Sciences of China, 2008, 15(2): 293−300. doi: 10.3321/j.issn:1005-8737.2008.02.013 [48] Anderson S M, Roels O A. Effects of light intensity on nitrate and nitrite uptake and excretion by Chaetoceros curvisetus[J]. Marine Biology, l98l, 62(4): 257−261. doi: 10.1007/BF00397692 [49] 孟庆. 营养成分检测在食品安全中的价值与应用策略[J]. 食品安全导刊, 2023(15): 21−23.Meng Qing. The value and application strategy of nutrient composition testing in food safety[J]. China Food Safety Magazine, 2023(15): 21−23. [50] 纪明侯. 我国经济褐藻的化学成分研究—Ⅱ. 北方产海带、海蒿子和海黍子的主要化学成分季节变化[J]. 海洋与湖沼, 1963, 5(1): 1−10.Ji Minghou. Studies on the chemical composition of the Chinese economic brown seaweeds—Ⅱ. Seasonal variations in the main chemical components of Laminaria japonica, Sargassum pallidum and Sargassum kjellmanianum from the North China[J]. Oceanologia et Limnologia Sinica, 1963, 5(1): 1−10. [51] Gerasimenko N, Logvinov S. Seasonal composition of lipids, fatty acids pigments in the brown Alga Sargassum pallidum: the potential for health[J]. Open Journal of Marine Science, 2016, 6(4): 498−523, doi: 10.4236/ojms.2016.64041 [52] 孙百晔, 梁生康, 王长友, 等. 光照与东海近海中肋骨条藻(Skeletonema costatum)赤潮发生季节的关系[J]. 环境科学, 2008, 29(7): 1849−1854. doi: 10.3321/j.issn:0250-3301.2008.07.015Sun Baiye, Liang Shengkang, Wang Changyou, et al. Role of irradiance on the seasonality of Skeletonema costatum cleve blooms in the coastal area in East China Sea[J]. Environmental Science, 2008, 29(7): 1849−1854. doi: 10.3321/j.issn:0250-3301.2008.07.015 [53] Murakami K, Yamaguchi Y, Noda K, et al. Seasonal variation in the chemical composition of a marine brown alga, Sargassum horneri (Turner) C. Agardh[J]. Journal of Food Composition and Analysis, 2011, 24(2): 231−236, doi: 10.1016/j.jfca.2010.08.004 [54] Murakami K, Yamaguchi Y, Sugawa-Katayama, et al. Effect of water depth on seasonal variation in the chemical composition of akamoku, Sargassum horneri (Turner) C. Agardh[J]. Natural Resources, 2016, 7(4): 147−156, doi: 10.4236/nr.2016.74015 [55] 胡斌, 宋理平, 冒树泉, 等. 铜藻的营养成分分析与营养学评价[J]. 广东海洋大学学报, 2015, 35(6): 100−104. doi: 10.3969/j.issn.1673-9159.2015.06.018Hu Bin, Song Liping, Mao Shuquan, et al. Nutrient analysis of Sargassum horneri and its nutritional evaluation[J]. Journal of Guangdong Ocean University, 2015, 35(6): 100−104. doi: 10.3969/j.issn.1673-9159.2015.06.018