留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多源数据频率域加权融合的深海高精度海底地形模型构建-以格陵兰岛南部海域为例

卜宪海 谭新月 张建兴 樊妙 闫循鹏 阳凡林

卜宪海,谭新月,张建兴,等. 多源数据频率域加权融合的深海高精度海底地形模型构建-以格陵兰岛南部海域为例[J]. 海洋学报,2025,47(x):1–15
引用本文: 卜宪海,谭新月,张建兴,等. 多源数据频率域加权融合的深海高精度海底地形模型构建-以格陵兰岛南部海域为例[J]. 海洋学报,2025,47(x):1–15
Bu Xianhai,Tan Xinyue,Zhang Jianxing, et al. Development of a High-Precision Deep-Sea Seabed Terrain Model Through Frequency Domain Weighted Fusion of Multi-Source Data: A Case Study in the Southern Waters of Greenland[J]. Haiyang Xuebao,2025, 47(x):1–15
Citation: Bu Xianhai,Tan Xinyue,Zhang Jianxing, et al. Development of a High-Precision Deep-Sea Seabed Terrain Model Through Frequency Domain Weighted Fusion of Multi-Source Data: A Case Study in the Southern Waters of Greenland[J]. Haiyang Xuebao,2025, 47(x):1–15

多源数据频率域加权融合的深海高精度海底地形模型构建-以格陵兰岛南部海域为例

基金项目: 国家自然科学基金项目(42204049, 42206200),山东省自然科学基金项目(ZR2022QD008), 青岛市自然科学基金项目(24-8-4-zrjj-2-jch)。
详细信息
    作者简介:

    卜宪海(1990—),男,山东济宁人,副教授,主要从事高精度海底地形地貌测量理论方法及应用,E-mail:buxianhai2012@163.com

    通讯作者:

    阳凡林(1974—),男,湖北荆州人,教授,主要从事海洋测绘、GNSS应用相关研究,E-mail:yang723@163.com

Development of a High-Precision Deep-Sea Seabed Terrain Model Through Frequency Domain Weighted Fusion of Multi-Source Data: A Case Study in the Southern Waters of Greenland

  • 摘要: 融合卫星重力反演、船载声呐测深等多源数据是构建大范围深海高精度地形模型的核心技术途径。然而,当前方法通常难以兼顾局部地形细节和全局整体趋势,为此本文提出了一种基于多源数据频率域加权融合的深海高精度海底地形模型构建方法。首先,对多源数据进行数据格式转换、数据清洗与基准统一等预处理;然后,分别对测区对应的6个全球地形模型进行分频处理与加权融合,以局部船测地形与融合后模型的水深偏差为约束条件,迭代优化融合权重并得到初始融合结果;最后,联合局部船测地形与初始融合结果进行局部地形细节构建,从而实现大范围测区高精度地形模型重构。以格陵兰岛南部局部区域深海地形重构为例,结果表明:相比最邻近插值、反距离加权、自然邻近插值、克里金插值以及移去-恢复法等经典方法,本文方法构建的海底地形模型的均方根误差分别降低了17.15%、16.50%、16.63%、16.67%、9.99%,与IBCAO5.0模型之间的决定系数R2分别提高了约8.82%、8.27%、8.27%、8.41%、16.09%,地形整体趋势与局部细节信息均得到有效保证。
  • 图  1  研究区域示意图

    Fig.  1  Schematic of the study area

    图  2  研究区域对应的各个DBMs水深图

    Fig.  2  Bathymetric map of various DBMs corresponding to the research area

    图  3  本文方法技术路线

    Fig.  3  Flow diagram of the proposed methods

    图  4  各航次潮位变化图

    Fig.  4  Tide level variation during each cruise

    图  5  小波变换三层分解

    Fig.  5  Wavelet transform by three-layer decomposition

    图  6  不同小波基函数与分解层数下地形加权融合结果评价指标变化

    Fig.  6  Changes in evaluation indicators for terrain weighted fusion results under different wavelet basis functions and decomposition levels

    图  7  IBCAO4.0 (a)和IBCAO5.0 (b)水深图

    Fig.  7  Bathymetric maps of IBCAO4.0 (a) and IBCAO5.0 (b)

    图  8  不同方法构建的海底地形模型:a最近邻插值,b反距离加权,c自然邻近插值,d克里金插值,e移去-恢复法,f 本文方法

    Fig.  8  Seafloor terrain models constructed by different methods: a Nearest neighbor interpolation, b Inverse distance weighting, c Natural neighbor interpolation, d Kriging interpolation, e Removal-recovery method, f This paper's method

    图  9  不同方法构建的海底地形与IBCAO5.0之间水深偏差的分布统计

    Fig.  9  Statistic of depth biases distribution between the seafloor topography model constructed by different methods and IBCAO5.0

    图  10  所选地形剖面线的位置

    Fig.  10  Location of selected seabed topography profile line

    图  11  本文方法构建的海底地形模型与各DBMs产品地形剖面对比

    Fig.  11  Seabed profile comparison between the seafloor topographic model constructed by the proposed method and the different DBMs product

    表  1  船测数据信息

    Tab.  1  Information on ship survey data

    序号航次调查年份多波束仪器型号航线总长(km)调查船
    1EW96071996Atlas Hydrosweep DS11500Maurice Ewing
    2KN158L51998SeaBeam 21123565Knorr
    3MSM432015Simrad EM1227661Maria S. Merian
    4AT30-012015Kongsberg EM1222495Atlantis
    5AR35-042019Kongsberg EM122; Kongsberg EM71015778neil_armstrong
    6AR462020Kongsberg EM1222466neil_armstrong
    下载: 导出CSV

    表  2  各DBMs基本信息

    Tab.  2  Basic information of each DBMs

    数据集 组织机构 国家 更新时间 分辨率 水平和垂直基准 数据来源
    ETOPO2022 NCEI USA 2023 15″ WGS84 MSL https://www.ncei.noaa.gov/products/etopo-global-relief-model
    ETOPO1 NGDC USA 2009 1′ WGS84 MSL https://www.ngdc.noaa.gov/mgg/global
    GEBCO_2024 The Nippon
    Foundation GEBCO
    UK-Japan 2024 15″ WGS84 MSL https://www.gebco.net/data_and_products/gridded_bathymetry_data/
    SRTM15_V2.5.5 SIO USA 2019 15″ WGS84 MSL https://topex.ucsd.edu/pub/srtm15_plus/
    SRTM30_PLUS SIO USA 2014 30″ WGS84 MSL https://topex.ucsd.edu/pub/srtm30_plus/
    TOPO25.1 SIO USA 2023 1′ WGS84 MSL https://topex.ucsd.edu/pub/global_ topo_1min/
    下载: 导出CSV

    表  3  船测水深数据与DBMs的空间相关矩阵

    Tab.  3  The spatial correlation matrix between ship-measured bathymetry data and DBMs

    ETOPO1 ETOPO2022 GEBCO_2024 船测水深 SRTM15_V2.5.5 SRTM30_PLUS TOPO25.1
    ETOPO1 1.00 0.84 0.81 0.77 0.84 0.89 0.88
    ETOPO2022 0.84 1.00 0.98 0.92 0.97 0.95 0.96
    GEBCO_2024 0.81 0.98 1.00 0.93 0.96 0.94 0.95
    船测水深 0.77 0.92 0.93 1.00 0.91 0.88 0.90
    SRTM15_V2.5.5 0.84 0.97 0.96 0.91 1.00 0.96 0.99
    SRTM30_PLUS 0.89 0.95 0.94 0.88 0.96 1.00 0.96
    TOPO25.1 0.88 0.96 0.95 0.90 0.99 0.96 1.00
    下载: 导出CSV

    表  4  不同DBMs与实测水深数据的定量评价 m

    Tab.  4  Quantitative evaluation of different DBMs with measured bathymetric data m

    序号 模型 最大值 最小值 平均值 标准差(SD) 平均绝对值(MAE) 均方根误差(RMSE) 决定系数(R2
    ETOPO_2022 396.634 −708.507 −3.991 64.778 35.787 64.900 0.795
    ETOPO1 523.911 1002.336 −3.895 103.392 65.520 103.466 0.410
    GEBCO2024 387.406 −700.447 −7.691 59.895 31.461 60.386 0.813
    IBCAO5.0 365.996 −689.815 2.210 59.082 30.830 60.067 0.815
    IBCAO4.0 347.352 −789.955 17.413 68.780 43.113 70.950 0.779
    SRTM15_V2.5.5 347.352 −789.955 17.412 68.780 43.113 70.950 0.779
    SRTM30_PLUS 456.037 −747.088 −5.658 76.649 46.116 76.857 0.721
    TOPO_25.1 344.422 −681.350 −6.577 71.505 40.634 71.807 0.702
    下载: 导出CSV

    表  5  不同方法构建的海底地形模型定量评价 m

    Tab.  5  Quantitative evaluation of seafloor topographic models constructed by different methods m

    序号 方法 最大值 最小值 平均值 标准差(SD) 平均绝对值(MAE) 均方根误差(RMSE) 决定系数(R2
    1 最近邻 368.034 −695.890 −13.542 56.024 36.191 57.638 0.782
    2 反距离加权 364.755 −688.920 −13.550 55.567 35.566 57.195 0.786
    3 自然邻 368.681 −688.567 −13.481 55.674 35.769 57.283 0.786
    4 克里金 369.137 −688.811 −13.571 55.680 35.848 57.310 0.785
    5 移去-恢复 346.130 −232.950 −27.383 45.446 38.371 53.058 0.733
    6 本方法 626.480 -689.820 6.229 47.338 26.749 47.755 0.851
    下载: 导出CSV

    表  6  不同方法构建海底地形模型无实测多波束区域定量评价 m

    Tab.  6  Quantitative evaluation of different methods to construct a seafloor topographic modelwithout measured multibeam areas m

    序号 方法 最大值 最小值 平均值 标准差(SD) 平均绝对值(MAE) 均方根误差(RMSE) 决定系数(R2
    1 最近邻 346.131 −232.951 −27.150 45.3574 38.137 52.862 0.737
    2 反距离加权 346.131 −232.951 −27.150 45.357 38.137 52.862 0.737
    3 自然邻 346.131 −232.952 −27.107 45.407 38.147 52.883 0.737
    4 克里金 346.131 −232.951 −27.150 45.357 38.137 52.862 0.737
    5 移去-恢复 346.131 −232.951 −27.556 45.537 38.566 53.226 0.731
    6 本方法 626.484 −143.509 9.844 28.641 21.473 30.286 0.914
    下载: 导出CSV
  • [1] 吴园涛, 段晓男, 沈刚, 等. 强化我国海洋领域国家战略科技力量的思考与建议[J]. 地球科学进展, 2021, 36(4): 413−420. doi: 10.11867/j.issn.1001-8166.2021.039

    Wu Yuantao, Duan Xiaonan, Shen Gang, et al. Thoughts and suggestions on strengthening the national strategic scientific and technological forces in the marine field of China[J]. Advances in Earth Science, 2021, 36(4): 413−420. doi: 10.11867/j.issn.1001-8166.2021.039
    [2] 吴自银, 阳凡林, 李守军. 高分辨率海底地形地貌-探测处理理论与技术[M]. 北京: 科学出版社, 2017. (查阅网上资料, 未找到对应的标黄作者信息, 请确认)

    Wu Ziyin, Yang Fanlin, Li Shoujun. High Resolution Submarine Geomorphology[M]. Beijing: Science Press, 2017.
    [3] 阳凡林, 沈瑞杰, 梅赛, 等. 联合重力异常和重力垂直梯度异常数据反演皇帝山海域海底地形[J]. 海洋学报, 2022, 44(12): 126−135.

    Yang Fanlin, Shen Ruijie, Mei Sai, et al. Inversion of seafloor topography in Emperor Seamount sea area by combined gravity anomalies and vertical gravity gradient anomalies data[J]. Haiyang Xuebao, 2022, 44(12): 126−135.
    [4] Amoroso P P, Aguilar F J, Parente C, et al. Statistical assessment of some interpolation methods for building grid format digital bathymetric models[J]. Remote Sensing, 2023, 15(8): 2072. doi: 10.3390/rs15082072
    [5] Lambev T, Prodanov B, Dimitrov L, et al. Digital bathymetric model of the Burgas Bay, Bulgarian Black Sea[C]//Proceedings of SPIE 11524, Eighth International Conference on Remote Sensing and Geoinformation of the Environment. Paphos: SPIE, 2020: 1152421.
    [6] Mayer L, Jakobsson M, Allen G, et al. The Nippon foundation—GEBCO seabed 2030 project: the quest to see the world’s oceans completely mapped by 2030[J]. Geosciences, 2018, 8(2): 63. doi: 10.3390/geosciences8020063
    [7] Niyazi Y, Thomas E A, Pucino N, et al. Status of global seafloor mapping effort and priority areas for future mapping[J]. Frontiers in Marine Science, 2025, 12: 1543885. doi: 10.3389/fmars.2025.1543885
    [8] Tozer B, Sandwell D T, Smith W H F, et al. Global bathymetry and topography at 15 arc sec: SRTM15+[J]. Earth and Space Science, 2019, 6(10): 1847−1864. doi: 10.1029/2019EA000658
    [9] Jakobsson M, Mohammad R, Karlsson M, et al. The international bathymetric chart of the arctic ocean version 5.0[J]. Scientific Data, 2024, 11(1): 1420. doi: 10.1038/s41597-024-04278-w
    [10] Dorschel B, Hehemann L, Viquerat S, et al. The international bathymetric chart of the southern ocean version 2[J]. Scientific Data, 2022, 9(1): 275. doi: 10.1038/s41597-022-01366-7
    [11] Jakobsson M, Mayer L A, Bringensparr C, et al. The international bathymetric chart of the arctic ocean version 4.0[J]. Scientific Data, 2020, 7(1): 176. doi: 10.1038/s41597-020-0520-9
    [12] Fan Diao, Li Shanshan, Feng Jinkai, et al. A new global bathymetry model: STO_IEU2020[J]. Remote Sensing, 2022, 14(22): 5744. doi: 10.3390/rs14225744
    [13] Smith W H F, Wessel P. Gridding with continuous curvature splines in tension[J]. Geophysics, 1990, 55(3): 293−305. doi: 10.1190/1.1442837
    [14] Shepard D. A two-dimensional interpolation function for irregularly-spaced data[C]//Proceedings of the 1968 23rd ACM National Conference. ACM, 1968: 517−524. (查阅网上资料, 未找到对应的出版地信息, 请确认)
    [15] Oliver M A, Webster R. Kriging: a method of interpolation for geographical information systems[J]. International Journal of Geographical Information Systems, 1990, 4(3): 313−332. doi: 10.1080/02693799008941549
    [16] Lloyd C D, Atkinson P M. Deriving DSMs from LiDAR data with kriging[J]. International Journal of Remote Sensing, 2002, 23(12): 2519−2524. doi: 10.1080/01431160110097998
    [17] Šiljeg A, Lozić S, Šiljeg S. A comparison of interpolation methods on the basis of data obtained from a bathymetric survey of Lake Vrana, Croatia[J]. Hydrology and Earth System Sciences, 2015, 19(8): 3653−3666. doi: 10.5194/hess-19-3653-2015
    [18] Bäckström A. A new digital bathymetric model of Lake Vättern, Southern Sweden[D]. Stockholm: Stockholm University, 2018.
    [19] 王可伟, 高利华, 江锋. 基于改进反距离加权算法的海底DEM建模方法[J]. 海洋测绘, 2021, 41(1): 61−64. doi: 10.3969/j.issn.1671-3044.2021.01.013

    Wang Kewei, Gao Lihua, Jiang Feng. A method of seabed DEM modeling based on the improved inverse distance weighted interpolation algorithm[J]. Hydrographic Surveying and Charting, 2021, 41(1): 61−64. doi: 10.3969/j.issn.1671-3044.2021.01.013
    [20] Jakobsson M, Mayer L, Coakley B, et al. The international bathymetric chart of the Arctic Ocean (IBCAO) version 3.0[J]. Geophysical Research Letters, 2012, 39(12): L12609.
    [21] Arndt J E, Schenke H W, Jakobsson M, et al. The International Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0—A new bathymetric compilation covering circum‐Antarctic waters[J]. Geophysical Research Letters, 2013, 40(12): 3111−3117. doi: 10.1002/grl.50413
    [22] Weatherall P, Marks K M, Jakobsson M, et al. A new digital bathymetric model of the world's oceans[J]. Earth and Space Science, 2015, 2(8): 331−345. doi: 10.1002/2015EA000107
    [23] 樊妙, 孙毅, 邢喆, 等. 基于多源水深数据融合的海底高精度地形重建[J]. 海洋学报, 2017, 39(1): 130−137. doi: 10.3969/j.issn.0253-4193.2017.01.014

    Fan Miao, Sun Yi, Xing Zhe, et al. Bathymetry fusion techniques for high-resolution digital bathymetric modeling[J]. Haiyang Xuebao, 2017, 39(1): 130−137. doi: 10.3969/j.issn.0253-4193.2017.01.014
    [24] 徐泽, 高金耀, 杨春国, 等. 南极罗斯海高分辨率数字水深模型[J]. 极地研究, 2018, 30(4): 360−369.

    Xu Ze, Gao Jinyao, Yang Chunguo, et al. A new high-resolution digital bathymetric model of the ross sea, Antarctica[J]. Chinese Journal of Polar Research, 2018, 30(4): 360−369.
    [25] 程建华, 黄孟远, 葛靖宇, 等. 基于改进“移去-恢复”算法的海底地形构建方法研究[J]. 地球信息科学学报, 2021, 23(3): 377−384. doi: 10.12082/dqxxkx.2021.200255

    Cheng Jianhua, Huang Mengyuan, Ge Jingyu, et al. Research on construction method of seabed topography based on improved "remove-restore" algorithm[J]. Journal of Geo-Information Science, 2021, 23(3): 377−384. doi: 10.12082/dqxxkx.2021.200255
    [26] Liu Yang, Wu Ziyin, Zhao Dineng, et al. Construction of high-resolution bathymetric dataset for the Mariana trench[J]. IEEE Access, 2019, 7: 142441−142450. doi: 10.1109/ACCESS.2019.2944667
    [27] Smith W H F, Sandwell D T. Global sea floor topography from satellite altimetry and ship depth soundings[J]. Science, 1997, 277(5334): 1956−1962. doi: 10.1126/science.277.5334.1956
    [28] Sandwell D T, Smith W H F. Marine gravity anomaly from Geosat and ERS 1 satellite altimetry[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B5): 10039−10054. doi: 10.1029/96JB03223
    [29] 熊桂芳, 王波, 朱长德, 等. 基于多源数据融合的澎湖水道数字水深模型构建[J]. 海洋科学进展, 2024, 42(1): 149−159. doi: 10.12362/j.issn.1671-6647.20220606002

    Xiong Guifang, Wang Bo, Zhu Changde, et al. Construction of Penghu channel digital bathymetric model based on multisource data fusion[J]. Advances in Marine Science, 2024, 42(1): 149−159. doi: 10.12362/j.issn.1671-6647.20220606002
    [30] Ruan Xiaoguang, Cheng Liang, Chu Sensen, et al. A new digital bathymetric model of the South China Sea based on the subregional fusion of seven global seafloor topography products[J]. Geomorphology, 2020, 370: 107403. doi: 10.1016/j.geomorph.2020.107403
    [31] 阮晓光, 占赵杰, 闫兆进, 等. 基于全球测深数据的中国海岸线周边海域数字水深模型融合[J]. 海洋学报, 2024, 46(7): 16−28. doi: 10.12284/hyxb2024062

    Ruan Xiaoguang, Zhan Zhaojie, Yan Zhaojin, et al. Digital bathymetric model fusion of offshore waters around China’s coastline based on global bathymetry data[J]. Haiyang Xuebao, 2024, 46(7): 16−28. doi: 10.12284/hyxb2024062
    [32] Chen Zhaoyu, Liu Qiankun, Xu Ke, et al. Weighted fusion method of marine gravity field model based on water depth segmentation[J]. Remote Sensing, 2024, 16(21): 4107. doi: 10.3390/rs16214107
    [33] 赵建虎, 张红梅, 严俊, 等. 削弱残余误差对多波束测深综合影响的方法研究[J]. 武汉大学学报(信息科学版), 2013, 38(10): 1184−1187.

    Zhao Jianhu, Zhang Hongmei, Yan Jun, et al. Weakening influence of residual error for MBS sounding[J]. Geomatics and Information Science of Wuhan University, 2013, 38(10): 1184−1187.
    [34] 周平. 多波束测深条带拼接区误差处理方法研究[D]. 南昌: 东华理工大学, 2017.

    Zhou Ping. Research on error processing methods in multi-beam sounding swath joins[D]. Nanchang: East China University of Technology, 2017.
    [35] 马伟鹏, 杨海忠, 孙建伟. 基于地形频谱分析提高多波束条带拼接效果应用[J]. 海洋地质前沿, 2018, 34(8): 68−72.

    Ma Weipeng, Yang Haizhong, Sun Jianwei. Improvement of multi-beam stripe splicing effect based on topographic spectrum analysis[J]. Marine Geology Frontiers, 2018, 34(8): 68−72.
    [36] 孙亮, 严薇, 刘平芝, 等. 采用小波分析的SRTM DEM与ASTER DEM数据融合[J]. 测绘科学技术学报, 2014, 31(4): 388−392. doi: 10.3969/j.issn.1673-6338.2014.04.013

    Sun Liang, Yan Wei, Liu Pingzhi, et al. Data fusion of SRTM DEM and ASTER DEM based on wavelet analysis[J]. Journal of Geomatics Science and Technology, 2014, 31(4): 388−392. doi: 10.3969/j.issn.1673-6338.2014.04.013
    [37] Tian Yu, Lei Shaogang, Bian Zhengfu, et al. Improving the accuracy of open source digital elevation models with multi-scale fusion and a slope position-based linear regression method[J]. Remote Sensing, 2018, 10(12): 1861. doi: 10.3390/rs10121861
    [38] Amante C, Eakins B W. ETOPO1 arc-minute global relief model: procedures, data sources and analysis[R]. Boulder: NOAA, 2009.
    [39] MacFerrin M, Amante C, Carignan K, et al. The earth topography 2022 (ETOPO 2022) global DEM dataset[J]. Earth System Science Data Discussions, 2024: 1−24. (查阅网上资料, 未找到对应的卷期页码信息, 请确认)
    [40] Becker J J, Sandwell D T, Smith W H F, et al. Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS[J]. Marine Geodesy, 2009, 32(4): 355−371. doi: 10.1080/01490410903297766
    [41] Andersen O B, Knudsen P. The DTU17 global marine gravity field: first validation results[M]//Mertikas S P, Pail R. Fiducial Reference Measurements for Altimetry: Proceedings of the International Review Workshop on Satellite Altimetry Cal/Val Activities and Applications. Cham: Springer, 2019: 83−87.
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-10
  • 修回日期:  2025-07-17
  • 网络出版日期:  2025-07-31

目录

    /

    返回文章
    返回