[1] |
Field C B, Behrenfeld M J, Randerson J T, et al. Primary production of the biosphere: integrating terrestrial and oceanic components[J]. Science, 1998, 281(5374): 237−240. doi: 10.1126/science.281.5374.237
|
[2] |
Racault M F, Le Quéré C, Buitenhuis E, et al. Phytoplankton phenology in the global ocean[J]. Ecological Indicators, 2012, 14(1): 152−163. doi: 10.1016/j.ecolind.2011.07.010
|
[3] |
Sigman D M, Hain M P. The biological productivity of the ocean[J]. Nature Education Knowledge, 2012, 3(10): 21. (查阅网上资料, 请确认修改是否正确Sigman D M, Hain M P. The biological productivity of the ocean[J]. Nature Education Knowledge, 2012, 3(10): 21. (查阅网上资料, 请确认修改是否正确)
|
[4] |
Ware D M, Thomson R E. Bottom-up ecosystem trophic dynamics determine fish production in the Northeast Pacific[J]. Science, 2005, 308(5726): 1280−1284. doi: 10.1126/science.1109049
|
[5] |
Evans W, Hales B, Strutton P G. Seasonal cycle of surface ocean pCO2 on the Oregon shelf[J]. Journal of Geophysical Research: Oceans, 2011, 116(C5): C05012, doi: 10.1029/2010JC006625
|
[6] |
孙友旭, 任景玲, 刘素美, 等. 春季水华对南黄海总溶解态无机砷生物地球化学行为的影响[J]. 海洋学报, 2015, 37(4): 16−27.Sun Youxu, Ren Jingling, Liu Sumei, et al. The impact of spring bloom on the biogeochemical behavior of total dissolved inorganic arsenic in the South Yellow Sea[J]. Haiyang Xuebao, 2015, 37(4): 16−27.
|
[7] |
田洪阵, 刘沁萍, Goes J I, 等. 近20年渤海叶绿素a浓度时空变化[J]. 海洋学报, 2019, 41(8): 131−140.Tian Hongzhen, Liu Qinping, Goes J I, et al. Temporal and spatial changes in chlorophyll a concentrations in the Bohai Sea in the past two decades[J]. Haiyang Xuebao, 2019, 41(8): 131−140.
|
[8] |
Garrison T. Oceanography: An Invitation to Marine Science[M]. 6th ed. Belmont: Thomson Brooks/Cole, 2007.
|
[9] |
Thomalla S J, Fauchereau N, Swart S, et al. Regional scale characteristics of the seasonal cycle of chlorophyll in the Southern Ocean[J]. Biogeosciences, 2011, 8(10): 2849−2866. doi: 10.5194/bg-8-2849-2011
|
[10] |
Corbière A, Metzl N, Reverdin G, et al. Interannual and decadal variability of the oceanic carbon sink in the North Atlantic subpolar gyre[J]. Tellus B: Chemical and Physical Meteorology, 2007, 59(2): 168−178. doi: 10.1111/j.1600-0889.2006.00232.x
|
[11] |
Grantham B A, Chan F, Nielsen K J, et al. Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the Northeast Pacific[J]. Nature, 2004, 429(6993): 749−754. doi: 10.1038/nature02605
|
[12] |
Cermeño P, Dutkiewicz S, Harris R P, et al. The role of nutricline depth in regulating the ocean carbon cycle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(51): 20344−20349.
|
[13] |
Regaudie-de-Gioux A, Duarte C M. Temperature dependence of planktonic metabolism in the ocean[J]. Global Biogeochemical Cycles, 2012, 26(1): GB1015, doi: 10.1029/2010GB003907
|
[14] |
Thomas M K, Kremer C T, Klausmeier C A, et al. A global pattern of thermal adaptation in marine phytoplankton[J]. Science, 2012, 338(6110): 1085−1088. doi: 10.1126/science.1224836
|
[15] |
Raymont J E G. Plankton and Productivity in the Oceans[M]. 2nd ed. Oxford: Pergamon Press, 1983.
|
[16] |
Platt T, Sathyendranath S. Ecological indicators for the pelagic zone of the ocean from remote sensing[J]. Remote Sensing of Environment, 2008, 112(8): 3426−3436. doi: 10.1016/j.rse.2007.10.016
|
[17] |
Friedland K D, Mouw C B, Asch R G, et al. Phenology and time series trends of the dominant seasonal phytoplankton bloom across global scales[J]. Global Ecology and Biogeography, 2018, 27(5): 551−569, doi: 10.1111/geb.12717
|
[18] |
Henson S A, Dunne J P, Sarmiento J L. Decadal variability in North Atlantic phytoplankton blooms[J]. Journal of Geophysical Research: Oceans, 2009, 114(C4): C04013, doi: 10.1029/2008JC005139
|
[19] |
Yamaguchi R, Rodgers K B, Timmermann A, et al. Trophic level decoupling drives future changes in phytoplankton bloom phenology[J]. Nature Climate Change, 2022, 12(5): 469−476. doi: 10.1038/s41558-022-01353-1
|
[20] |
He Xianqiang, Bai Yan, Pan D L, et al. Satellite views of the seasonal and interannual variability of phytoplankton blooms in the eastern China seas over the past 14 yr (1998-2011)[J]. Biogeosciences, 2013, 10(1): 4721−4739.
|
[21] |
Sapiano M R P, Brown C W, Schollaert Uz S, et al. Establishing a global climatology of marine phytoplankton phenological characteristics[J]. Journal of Geophysical Research: Oceans, 2012, 117(C8): C08026, doi: 10.1029/2012JC007958
|
[22] |
Lv Ting, Liu Dongyan, Zhou Peng, et al. The coastal front modulates the timing and magnitude of spring phytoplankton bloom in the Yellow Sea[J]. Water Research, 2022, 220: 118669. doi: 10.1016/j.watres.2022.118669
|
[23] |
Henson S A, Robinson I, Allen J T, et al. Effect of meteorological conditions on interannual variability in timing and magnitude of the spring bloom in the Irminger Basin, North Atlantic[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2006, 53(10): 1601−1615. doi: 10.1016/j.dsr.2006.07.009
|
[24] |
Racault M F, Sathyendranath S, Menon N, et al. Phenological responses to ENSO in the global oceans[J]. Surveys in Geophysics, 2017, 38(1): 277−293. doi: 10.1007/s10712-016-9391-1
|
[25] |
Alvera-Azcárate A, Barth A, Rixen M, et al. Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions: application to the Adriatic Sea surface temperature[J]. Ocean Modelling, 2005, 9(4): 325−346. doi: 10.1016/j.ocemod.2004.08.001
|
[26] |
高心雨, 王天浩, 苏华, 等. 南海两个代表性海区藻华事件特征的比较研究[J]. 海洋学报, 2023, 45(5): 90−106.Gao Xinyu, Wang Tianhao, Su Hua, et al. Comparative study on the characteristics of marine bloom events in two representative areas of the South China Sea[J]. Haiyang Xuebao, 2023, 45(5): 90−106.
|
[27] |
Feng Jianfeng, Durant J M, Stige L C, et al. Contrasting correlation patterns between environmental factors and chlorophyll levels in the global ocean[J]. Global Biogeochemical Cycles, 2015, 29(12): 2095−2107. doi: 10.1002/2015GB005216
|
[28] |
Marinov I, Doney S C, Lima I D. Response of ocean phytoplankton community structure to climate change over the 21st century: partitioning the effects of nutrients, temperature and light[J]. Biogeosciences, 2010, 7(12): 3941−3959. doi: 10.5194/bg-7-3941-2010
|
[29] |
Behrenfeld M J, O’Malley R T, Siegel D A, et al. Climate-driven trends in contemporary ocean productivity[J]. Nature, 2006, 444(7120): 752−755. doi: 10.1038/nature05317
|
[30] |
Feng Jianfeng, Stige L C, Hessen D O, et al. A threshold sea-surface temperature at 14℃ for phytoplankton nonlinear responses to ocean warming[J]. Global Biogeochemical Cycles, 2021, 35(5): e2020GB006808. doi: 10.1029/2020GB006808
|
[31] |
Falkowski P G, Oliver M J. Mix and match: how climate selects phytoplankton[J]. Nature Reviews Microbiology, 2007, 5(10): 813−819. doi: 10.1038/nrmicro1751
|
[32] |
Marañón E, Cermeño P, Latasa M, et al. Temperature, resources, and phytoplankton size structure in the ocean[J]. Limnology and Oceanography, 2012, 57(5): 1266−1278. doi: 10.4319/lo.2012.57.5.1266
|
[33] |
Rubio F C, Camacho F G, Sevilla J M F, et al. A mechanistic model of photosynthesis in microalgae[J]. Biotechnology and Bioengineering, 2003, 81(4): 459−473. doi: 10.1002/bit.10492
|
[34] |
Gregg W W, Casey N W, McClain C R. Recent trends in global ocean chlorophyll[J]. Geophysical Research Letters, 2005, 32(3): L03606, doi: 10.1029/2004GL021808
|
[35] |
Kahru M, Gille S T, Murtugudde R, et al. Global correlations between winds and ocean chlorophyll[J]. Journal of Geophysical Research: Oceans, 2010, 115(C12): C12040, doi: 10.1029/2010JC006500
|
[36] |
Barton A D, Lozier M S, Williams R G. Physical controls of variability in North Atlantic phytoplankton communities[J]. Limnology and Oceanography, 2015, 60(1): 181−197. doi: 10.1002/lno.10011
|
[37] |
Sverdrup H U. On conditions for the vernal blooming of phytoplankton[J]. ICES Journal of Marine Science, 1953, 18(3): 287−295. doi: 10.1093/icesjms/18.3.287
|
[38] |
Cabré A, Marinov I, Leung S. Consistent global responses of marine ecosystems to future climate change across the IPCC AR5 earth system models[J]. Climate Dynamics, 2015, 45(5/6): 1253−1280.
|