留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多源数据融合的海上风电场三维地质建模方法

王德元 彭秀钟 杜宇琛 高曜翔 张友虎

王德元,彭秀钟,杜宇琛,等. 多源数据融合的海上风电场三维地质建模方法[J]. 海洋学报,2025,47(x):1–13
引用本文: 王德元,彭秀钟,杜宇琛,等. 多源数据融合的海上风电场三维地质建模方法[J]. 海洋学报,2025,47(x):1–13
Wang Deyuan,Peng Xiuzhong,Du Yuchen, et al. 3D geological modelling method of offshore wind farms based on multi-source data fusion[J]. Haiyang Xuebao,2025, 47(x):1–13
Citation: Wang Deyuan,Peng Xiuzhong,Du Yuchen, et al. 3D geological modelling method of offshore wind farms based on multi-source data fusion[J]. Haiyang Xuebao,2025, 47(x):1–13

多源数据融合的海上风电场三维地质建模方法

详细信息
    作者简介:

    王德元(1983—),男,重庆市奉节县人,工程师,主要从事海上风电设计技术研究。E-mail:20759565@qq.com

    通讯作者:

    张友虎,教授,主要从事海洋岩土工程领域研究。E-mail: youhuzhang@seu.edu.cn

  • 中图分类号: P752;TU195;TM614

3D geological modelling method of offshore wind farms based on multi-source data fusion

  • 摘要: 三维地质模型通过利用海上勘察数据直观地展示海底地质情况,对海上风电场的开发建设具有积极的推动作用。为提高海上风电场三维地质模型的准确性和建模效率,提出一种基于多源数据融合的地质建模方法。该方法对岩土勘察数据和工程物探数据进行综合解释,采用空间插值算法生成连续且平滑的地层分界面,并利用Python开源库实现了三维地质模型的构建与可视化。此外,以粤东地区某海上风电场为例,验证了该地质建模方法的可靠性。结果表明:该方法实现了岩土数据和物探数据的有效融合,所构建的三维地质模型能够反映海上风电场复杂的地质特征。所提出的三维地质建模方法可以适用于不同的工程地质环境,为海上风电场从勘察、设计、安装、运维到退役的全生命周期管理提供坚实的技术支撑。
  • 图  1  岩土勘察数据和工程物探数据的示例

    (a) 岩土勘察数据,(b) 工程物探数据

    Fig.  1  Examples of geotechnical investigation data and engineering geophysical data

    (a) Geotechnical investigation data, (b) engineering geophysical data

    图  2  基于多源数据融合的三维地质模型构建流程

    Fig.  2  Flow chart of constructing three-dimensional (3D) geological models based on multi-source data fusion

    图  3  空间插值原理示意图

    Fig.  3  Schematic diagram of spatial interpolation principles

    图  4  三维可视化原理

    Fig.  4  The principle of 3D visualization

    图  5  粤东某海上风电场的位置及其海上勘察数据

    Fig.  5  The location and marine survey data of an offshore wind farm in eastern Guangdong

    图  6  海上勘察数据的综合解释结果

    (a) 测线H09地震图像上钻孔数据、CPT数据和地震数据的综合解释;(b) 地震图像的综合解释结果汇总;(c) 地层界面数据集

    Fig.  6  Integrated interpretation results of marine survey data

    (a) Integrated interpretation of borehole data, CPT data, and seismic data on the seismic image of the survey line H09; (b) aggregation of integrated interpretation results for seismic images; (c) layer interface dataset

    图  7  不同插值间距下反比距离加权法和普通克里金法的空间插值结果比较(以地层分界T4为例)

    Fig.  7  Comparison of spatial interpolation results between inverse distance weighting method and ordinary kriging method under different interpolation spacings (Taking the layer interface T4 as an example)

    图  8  使用普通克里金法的空间插值结果

    (a) 地层界面三维可视化,(b) 地层分界T1,(c) 地层分界T2,(d) 地层分界T3,(e) 地层分界T4

    Fig.  8  Spatial interpolation results using ordinary kriging method

    (a) 3D visualization of layer interfaces, (b) the layer interface T1, (c) the layer interface T2, (d) the layer interface T3, (e) the layer interface T4

    图  9  海上风电场三维地质模型与验证

    (a) 地层A ~ E,(b) 地层D夹层细节,(c) 地层E夹层细节,(d) 实际钻孔与模型钻孔对比

    Fig.  9  3D geological models and validation for the offshore wind farm

    (a) The layers A ~ E, (b) details of interlayers within the layer D, (c) details of interlayers within the layer E, (d) comparison between actual boreholes and model boreholes

    表  1  该海上风电场区域各土层的纵波速度

    Tab.  1  The P-wave velocities of various soil layers in the offshore wind farm area

    土层类型 淤泥质土 粉砂、砂土 粉土、黏土、粉质黏土
    纵波速度/m·s−1 1550 1600 1650
    下载: 导出CSV
  • [1] Global Wind Energy Council. Global offshore wind report 2024[R]. Belgium: Global Wind Energy Council, 2024.
    [2] Houlding S W. 3D Geoscience Modeling: Computer Techniques for Geological Characterization[M]. Heidelberg: Springer, 1994.
    [3] Rey-Moral C, Motis K, Fernández-Viejo G, et al. A 3D geological model for a potential CO2 reservoir in the El Bierzo Basin (Carboniferous, NW Spain)[J]. Near Surface Geophysics, 2020, 18(2): 189−201. doi: 10.1002/nsg.12089
    [4] Ramajo J, Orellana-Macías J M, Galé C, et al. A 3D geological model of the Gallocanta Basin (Spain). The basis to update the hydrogeological model[J]. Earth Science Informatics, 2023, 16(2): 1797−1809. doi: 10.1007/s12145-023-01001-y
    [5] 周邓, 曾广亮, 王洪荣, 等. 江西桃山罗布里南部地区三维地质建模与成矿预测[J]. 地质通报, 2022, 41(12): 2256−2264. doi: 10.12097/j.issn.1671-2552.2022.12.015

    Zhou Deng, Zeng Guangliang, Wang Hongrong, et al. Three dimensional geological modeling and metallogenic prediction in the south of Luobuli, Taoshan, Jiangxi Province[J]. Geological Bulletin of China, 2022, 41(12): 2256−2264. doi: 10.12097/j.issn.1671-2552.2022.12.015
    [6] Dou Fanfan, Li Xiaohui, Xing Huaixue, et al. 3D geological suitability evaluation for urban underground space development–a case study of Qianjiang Newtown in Hangzhou, Eastern China[J]. Tunnelling and Underground Space Technology, 2021, 115: 104052. doi: 10.1016/j.tust.2021.104052
    [7] 张永旺, 庞世龙, 花卫华, 等. 基于地层尖灭的三维地质建模方法——以广西北海市为例[J/OL]. 地质通报, (2024-03-25). http://kns.cnki.net/kcms/detail/11.4648.p.20240322.1859.006.html.

    Zhang Yongwang, Pang Shilong, Hua Weihua, et al. Three-dimensional geological modelling method based on strata pinch-out: a case study of Beihai in Guangxi[J/OL]. Geological Bulletin of China, (2024-03-25). http://kns.cnki.net/kcms/detail/11.4648.p.20240322.1859.006.html. (查阅网上资料,未找到本条文献引用日期信息,请补充)
    [8] Liu Baoshun, Liu Yingnan, Zhang Zijing. Prediction of heavy metal pollution in soil based on SSA-XGBoost model and 3D geological model[J]. Soil and Sediment Contamination: An International Journal, 2024, 33(8): 1421−1439. doi: 10.1080/15320383.2024.2306491
    [9] 张立安, 李超, 张岚, 等. 渤海湾盆地黄河口凹陷A油田火成岩发育区储层特征及三维地质建模[J]. 海洋地质前沿, 2023, 39(1): 31−39.

    Zhang Li'an, Li Chao, Zhang Lan, et al. Reservoir characteristics and 3D geological modeling of igneous rock area in Huanghekou Sag A Oilfield, Bohai Bay Basin[J]. Marine Geology Frontiers, 2023, 39(1): 31−39.
    [10] Falsetta E, Bullejos M, Critelli S, et al. 3D modeling of the stratigraphic and structural architecture of the Crotone basin (southern Italy) using machine learning with Python[J]. Marine and Petroleum Geology, 2024, 164: 106825. doi: 10.1016/j.marpetgeo.2024.106825
    [11] 徐加宝, 张泽超, 张璐璐, 等. 基于贝叶斯理论和条件协同模拟的海上风电场土体参数空间变异性表征[J]. 岩土工程学报, 2024, 46(8): 1644−1654. doi: 10.11779/CJGE20221585

    Xu Jiabao, Zhang Zechao, Zhang Lulu, et al. Spatial variability characterization of soil properties in offshore wind farms based on Bayesian theory and conditional co-simulation method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1644−1654. doi: 10.11779/CJGE20221585
    [12] Vardy M E. Deriving shallow-water sediment properties using post-stack acoustic impedance inversion[J]. Near Surface Geophysics, 2015, 13(2): 143−154. doi: 10.3997/1873-0604.2014045
    [13] Putri S A, Panggeleng I, Nauw M, et al. Unlocking the shallow overburden understanding of Ubadari Gas Field in Indonesia using high-resolution shallow datasets[C]//Offshore Site Investigation Geotechnics 9th International Conference Proceeding. London: Society for Underwater Technology, 2023: 2129−2136.
    [14] Eady H, Bloore C, Gerritsma D. IJmuiden Ver Windfarm Zone: increasing the resolution of the southern North Sea stratigraphy using iterative ground modelling techniques[C]//Offshore Site Investigation Geotechnics 9th International Conference Proceeding. London: Society for Underwater Technology, 2023: 2072−2079.
    [15] Arlott L, James L, Christopher N, et al. The sand hole formation – winding back the clock to support ground modelling at Triton Knoll Offshore Wind Farm[C]//Offshore Site Investigation Geotechnics 9th International Conference Proceeding. London: Society for Underwater Technology, 2023: 827−835.
    [16] Sauvin G, Vanneste M, Vardy M, et al. Integration of geoscience data-the TNW Offshore Wind Farm case study[C]//Offshore Technology Conference Proceeding. Houston: Offshore Technology Conference, 2024: OTC-35476-MS.
    [17] 吴志春, 郭福生, 张万良, 等. 江西乐安相山火山盆地多源数据融合三维地质建模[J]. 桂林理工大学学报, 2020, 40(2): 310−322. doi: 10.3969/j.issn.1674-9057.2020.02.008

    Wu Zhichun, Guo Fusheng, Zhang Wanliang, et al. 3D geological modeling based on multi-source data merging of Xiangshan volcanic basin in Le’an of Jiangxi[J]. Journal of Guilin University of Technology, 2020, 40(2): 310−322. doi: 10.3969/j.issn.1674-9057.2020.02.008
    [18] 雷传扬, 刘兆鑫, 文辉, 等. 基于多源数据和先验知识约束的复杂地质体三维建模研究[J]. 地质论评, 2022, 68(4): 1393−1411.

    Lei Chuanyang, Liu Zhaoxin, Wen Hui, et al. Research on 3D geological modeling of complex geological body based on multi-source data and prior geological knowledge[J]. Geological Review, 2022, 68(4): 1393−1411.
    [19] 薛涛, 包训栓, 朱小弟, 等. 多源数据三维地质结构模型约束的属性建模方法: 以北京市通州城市副中心为例[J]. 地学前缘, 2023, 30(3): 529−536.

    Xue Tao, Bao Xunshuan, Zhu Xiaodi, et al. Attribute modeling constrained by multi-source data-based 3D geological structural model: a case study in Tongzhou District, Beijing[J]. Earth Science Frontiers, 2023, 30(3): 529−536.
    [20] 盛世强, 戴黎明, 李法坤, 等. 基于GOCAD软件的渤中凹陷428构造带三维地质建模[J]. 海洋地质前沿, 2023, 39(3): 91−100.

    Sheng Shiqiang, Dai Liming, Li Fakun, et al. 3D geological modeling of the 428 Tectonic Zone in Bozhong Depression using GOCAD software[J]. Marine Geology Frontiers, 2023, 39(3): 91−100.
    [21] Imam T S, Abdel-Fattah M I, Tsuji T, et al. Mapping the geological structures in the Ras El Ush field (Gulf of Suez, Egypt), based on seismic interpretation and 3D modeling techniques[J]. Journal of African Earth Sciences, 2022, 193: 104596. doi: 10.1016/j.jafrearsci.2022.104596
    [22] 罗辉, 蒋实, 赵宏刚, 等. 三维地质建模在高放废物地质处置预选地段筛选中的应用——以新疆预选区天湖预选地段为例[J]. 物探与化探, 2021, 45(6): 1488−1496.

    Luo Hui, Jiang Shi, Zhao Honggang, et al. Application of 3D geological modeling in screening of sites preselected for geological disposal of high-level radioactive wastes: a case study of Tianhu preselected site, Xinjiang[J]. Geophysical and Geochemical Exploration, 2021, 45(6): 1488−1496.
    [23] 江汝锋, 张迎朝, 杨希冰, 等. 空间地质建模技术在宝岛凹陷深水成藏研究中的应用[J]. 海洋学报, 2018, 40(3): 74−85. doi: 10.3969/j.issn.0253-4193.2018.03.007

    Jiang Rufeng, Zhang Yingzhao, Yang Xibing, et al. Application of spacial geologic modeling in deepwater accumulation in the Baodao Sag[J]. Haiyang Xuebao, 2018, 40(3): 74−85. doi: 10.3969/j.issn.0253-4193.2018.03.007
    [24] 花卫华, 曾新灵, 郭丹阳, 等. 基于构造恢复理论的含复杂断层三维地质建模方法[J]. 地球科学, 2024, 49(4): 1411−1420.

    Hua Weihua, Zeng Xinling, Guo Danyang, et al. 3D geological modeling method based on Tectonic Restoration theory[J]. Earth Science, 2024, 49(4): 1411−1420.
    [25] Olierook H K O, Scalzo R, Kohn D, et al. Bayesian geological and geophysical data fusion for the construction and uncertainty quantification of 3D geological models[J]. Geoscience Frontiers, 2021, 12(1): 479−493. doi: 10.1016/j.gsf.2020.04.015
    [26] Jia Ran, Lv Yikai, Wang Gongwen, et al. A stacking methodology of machine learning for 3D geological modeling with geological-geophysical datasets, Laochang Sn camp, Gejiu (China)[J]. Computers & Geosciences, 2021, 151: 104754.
    [27] Robertson P K. Soil classification using the cone penetration test[J]. Canadian Geotechnical Journal, 1990, 27(1): 151−158. doi: 10.1139/t90-014
    [28] 陈亮, 徐春喆, 郭鹏, 等. 基于CPTU解释黏性土不排水抗剪强度方法研究[J]. 海洋工程, 2024, 42(1): 147−157.

    Chen Liang, Xu Chunzhe, Guo Peng, et al. Estimation of the undrained shear strength of cohesive soil using CPTU intrepretation[J]. The Ocean Engineering, 2024, 42(1): 147−157.
    [29] O'Neill M P, Osuchowski A L, Cai Yongmin, et al. Integrated and data Science-informed seabed characterisation for optimised foundation design[J]. Ocean Engineering, 2023, 284: 115095. doi: 10.1016/j.oceaneng.2023.115095
    [30] 牛海峰, 李向辉, 梁峰, 等. 面向海上风电开发建设的工程地质模型及应用研究[J]. 南方能源建设, 2023, 10(4): 57−70.

    Niu Haifeng, Li Xianghui, Liang Feng, et al. Research on the engineering geological model and its application for offshore wind power development and construction[J]. Southern Energy Construction, 2023, 10(4): 57−70.
    [31] 赵斌, 张宝金, 张如伟, 等. 基于二维地震数据的宏观三维速度建模——以南海西北部海域为例[J]. 海洋地质前沿, 2019, 35(7): 18−24.

    Zhao Bin, Zhang Baojin, Zhang Ruwei, et al. Macroscopic 3D velocity modeling with 2D seismic data: taking the northwestern South China Sea as a case[J]. Marine Geology Frontiers, 2019, 35(7): 18−24.
    [32] 廖舟, 李梅. 基于开源GemPy的城市地下空间三维隐式势场建模方法研究[J]. 地学前缘, 2024, 31(3): 482−497.

    Liao Zhou, Li Mei. Research on the 3D implicit potential field modeling method for urban underground space based on the open-source GemPy[J]. Earth Science Frontiers, 2024, 31(3): 482−497.
    [33] De Mesnard L. Pollution models and inverse distance weighting: some critical remarks[J]. Computers & Geosciences, 2013, 52: 459−469.
    [34] Olea R A. Geostatistics for Engineers and Earth Scientists[M]. New York: Springer, 1999.
    [35] 姜逢宇, 黄牧, 熊自明, 等. 基于平面网格求交算法的三维地质模型边界面重构方法[J]. 岩土力学, 2021, 42(6): 1724−1732.

    Jiang Fengyu, Huang Mu, Xiong Ziming, et al. Method of boundary reconstruction of 3D geological model based on the algorithm for intersection of planar meshes[J]. Rock and Soil Mechanics, 2021, 42(6): 1724−1732.
    [36] 牛露佳, 石成岳, 王占刚, 等. 三维复杂地质结构模型的InterfaceGrid表达方法[J]. 地学前缘, 2024, 31(4): 129−138.

    Niu Lujia, Shi Chengyue, Wang Zhangang, et al. InterfaceGrid: gridding representation of 3D geological models for complex geological structures[J]. Earth Science Frontiers, 2024, 31(4): 129−138.
    [37] 孙记红, 魏合龙, 刘展, 等. 海洋地质三维可视化数据模型的设计方法[J]. 海洋地质前沿, 2015, 31(3): 56−61.

    Sun Jihong, Wei Helong, Liu Zhan, et al. Design of 3-dimensional visualization data model for marine geology[J]. Marine Geology Frontiers, 2015, 31(3): 56−61.
    [38] Bane Sullivan C, Kaszynski A A. PyVista: 3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit (VTK)[J]. Journal of Open Source Software, 2019, 4(37): 1450. doi: 10.21105/joss.01450
    [39] Ge Jiawang, Zhao Xiaoming, Tan Mingxuan, et al. Sequence stratigraphy and depositional evolution of the north-eastern shelf (33.9-10.5 Ma) of the Pearl River Mouth basin, South China Sea[J]. Marine and Petroleum Geology, 2022, 141: 105697. doi: 10.1016/j.marpetgeo.2022.105697
    [40] 黎鹏飞, 毕乾, 张友虎, 等. 粤东海域粉质土的循环加载特性研究[J]. 海洋通报, 2024, 43(4): 497−509.

    Li Pengfei, Bi Qian, Zhang Youhu, et al. Study on cyclic loading characteristics of silty soils offshore eastern Guangdong[J]. Marine Science Bulletin, 2024, 43(4): 497−509.
    [41] 吴自银, 温珍河, 付军, 等. 中国近海海洋地质[M]. 北京: 科学出版社, 2021.

    Wu Ziyin, Wen Zhenhe, Fu Jun, et al. Marine Geology of China Seas[M]. Beijing: Science Press, 2021.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  77
  • HTML全文浏览量:  26
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-23
  • 修回日期:  2024-12-31
  • 网络出版日期:  2025-01-22

目录

    /

    返回文章
    返回