Profile response to storm events of sandy beach: Observation and modelling
-
摘要: 频繁且严重的风暴事件影响下海滩侵蚀呈现普遍加剧的趋势,理解风暴事件影响下的海滩剖面变化过程对于砂质海岸侵蚀防护至关重要。为厘清海滩剖面对风暴的响应特征,本研究结合台风期间的现场观测和XBeach数值模型,揭示了台风“塔巴”影响下的浙江舟山朱家尖岛东沙海滩剖面形态变化,探讨了不同因素对于海滩风暴响应的影响。东沙海滩剖面在台风“塔巴”影响下展示出了显著的剖面上部冲刷、下部淤积的规律,且在位于离岸400 m的砂-泥分界线向海一侧,地形几乎无变化。对不同风暴情景计算发现,有效波高控制剖面的冲淤幅度,潮位控制冲淤的位置,风暴波高较大时细到中砂粒径范围的不同设置造成的剖面变化差异较小,有海滩养护时剖面变化停止点的离岸距离更远。本研究结果可为砂质海岸风暴侵蚀防护提供科学参考。
-
关键词:
- 海滩风暴响应 /
- 剖面变化过程 /
- 台风“塔巴” /
- XBeach数值模型
Abstract: Beach erosion under the influence of frequent and severe storm events is generally increasing. Understanding the process of beach profile change under the influence of storm events is essential for the protection of sandy coast erosion. To clarify the response characteristics of the embayed beach profile to the storm, this study combined field observation during the typhoon and the XBeach model to reveal the profile morphological changes of the Dongsha beach in Zhujiajian Island, Zhejiang Province, under the influence of typhoon Tapah, and the influence of different factors on the beach storm response was discussed. The main results are as follows. Under the influence of typhoon Tapah, the profile of the Dongsha beach showed a significant pattern of erosion in the upper part of the profile and accretion in the lower part, and there was almost no change in the topography on the seaward side of the 400 m offshore (sand-mud transition). The calculation of different storm scenarios shows that the significant wave height controls the erosion and deposition amplitude of the profile, while the tidal level controls the position of erosion and deposition on the profile. When the storm wave height is large, the difference in profile changes caused by different settings of fine to medium sand grain size range is small. The offshore distance of the stop point of profile change is farther when there is beach nourishment. The results of this study can provide a scientific reference for the protection of storm erosion in the sandy coast.-
Key words:
- Beach storm response /
- profile change process /
- typhoon Tapah /
- XBeach model
-
图 1 研究区域及台风“塔巴”移动路径(a)、典型剖面设置和波浪观测站位(b)及模型地形输入(c),a和b中底图获取自谷歌遥感影像
Fig. 1 Study area and the sketch of the route of typhoonTapah (a), the typical profile settings and the wave observation station (b), and the model topo-bathymetry input (c). The background maps in (a) and (b) are from Google satellite images.
图 4 东沙海滩近岸B站位测得的水深随时间的变化(图中深蓝色和浅蓝色阴影分别为大潮和小潮时间范围,红色阴影区为台风影响时间范围)
Fig. 4 Temporal variation of depth in the nearshore of Dongsha beach obtained from station B (The dark blue and light blue shadow areas show the time span of spring tide and the neap tide, respectively, while the red shadow area shows the time span when typhoon affected the study area)
图 5 大-小潮周期内东沙海滩近岸有效波高随时间的变化:测站A(a),测站B(b)和测站C(c)(红色阴影区域为台风影响时间范围)
Fig. 5 The temporal variation of the significant wave heights in the nearshore of Dongsha beach during a spring-neap cycle obtained from different stations: Station A (a), station B (b), station C(c) (the red shadow area shows the time span when typhoon affected the study area)
图 8 XBeach-1D模拟所得2.50 m潮位结合不同有效波高的风暴作用下的海滩剖面形态:整个剖面的形态变化(a),0~500 m范围内的剖面形态(b)以及剖面高程变化(c)
Fig. 8 The beach profile morphology obtained by XBeach-1D simulation at 2.50 m tide level combined with storm action of different significant wave heights: the whole profile (a), the profile in the range of 0~500 m (b) and the profile elevation change (c)
图 9 XBeach-1D模拟所得4 m有效波高风暴结合不同潮位对海滩剖面地形的影响:整个剖面的形态变化(a),0~500 m范围内的剖面形态(b)以及剖面高程变化(c)
Fig. 9 4 m significant wave height storm simulated by XBeach-1D combined with different tidal levels affects the beach profile topography: the whole profile (a), the profile in the range of 0~500 m (b) and the profile elevation change (c)
图 10 XBeach-1D模拟所得不同沉积物粒径在4 m有效波高风暴结合2.50 m潮位情况下的海滩剖面变化:整个剖面的形态变化(a),0~500 m范围内的剖面形态(b)以及剖面高程变化(c)
Fig. 10 Changes of beach profile with different sediment grain sizes obtained by XBeach-1D simulation under the condition of storm with significant wave height of 4 m and the tide level of 2.50 m: the whole profile (a), the profile in the range of 0~500 m (b) and the profile elevation change (c)
图 11 XBeach-1D模拟所得养护沉积物(D50=0.20 mm)在离岸方向的不同投放位置影响下的海滩剖面变化:整个剖面的形态变化(a),0~500 m范围内的剖面形态(b)以及剖面高程变化(c)
Fig. 11 XBeach-1D simulation results of the profile changes under the influence of the different placement in the offshore direction of the borrowed sediment (D50=0.20 mm): the whole profile (a), the profile in the range of 0~500 m (b) and the profile elevation change (c)
图 12 不同案例设置下XBeach-1D模拟所得剖面最大淤积厚度(a),最大侵蚀厚度(b),高程平均变化量(c)以及地形变化停止点离岸距离(d)(红色阴影区域为有效波高组案例,蓝色阴影区域为潮位组,绿色阴影区域为沉积物粒径组案例,灰色阴影区域为海滩养护组案例,不同颜色的实线箭头指示了较为显著的变化趋势,虚线箭头变化趋势较弱)
Fig. 12 Maximum accretion thickness (a), maximum erosion thickness (b), average elevation change (c) and the cross-shore distance of topographical change stopping point (d) obtained from XBeach-1D simulation under different case settings (red shaded area is significant wave height group, blue shaded area is tide level group, green shaded area is sediment grain size group, gray shaded area is beach nourishment group. The solid arrows of different colors indicate significant change trend, while dotted arrows show weak change trend)
表 1 XBeach-1D模拟东沙海滩剖面与实测剖面地形结果计算所得Skill值和均方根误差
Tab. 1 Skill and RMSE of the calculated results from XBeach-1D compared with the observed profile topography
模型计算日期 Skill值 均方根误差(m) 2019/9/18 0.998 0.009 2019/9/19 0.999 0.007 2019/9/20 0.996 0.013 2019/9/22 0.985 0.042 2019/9/23 0.981 0.035 2019/9/24 0.982 0.080 2019/9/25 0.994 0.040 平均 0.991 0.032 注:Skill值指示了模型结果和实测数据的吻合程度,Skill值1为代表模拟结果与实测完全吻合,该值为0则代表完全不符。 表 2 基于XBeach-1D的海滩动力地貌过程数值模拟的不同情景设置
Tab. 2 Case settings of the XBeach-1D beach morphodynamic simulation
对照组 案例 有效
波高/m潮位/
mD50/
mm养护沉积物投放
离岸距离/m养护沉积物
增加高程/m一、有效
波高组1 2 2.50 0.20 / / 2 3 2.50 0.20 / / 3 4 2.50 0.20 / / 4 5 2.50 0.20 / / 5 2 0.50 0.20 / / 6 3 0.50 0.20 / / 7 4 0.50 0.20 / / 8 5 0.50 0.20 / / 二、潮位组 9 4 0.50 0.20 / / 10 4 1.50 0.20 / / 11 4 2.50 0.20 / / 12 4 3.50 0.20 / / 13 2 0.50 0.20 / / 14 2 1.50 0.20 / / 15 2 2.50 0.20 / / 16 2 3.50 0.20 / / 三、沉积物
粒径组17 4 2.50 0.10 / / 18 4 2.50 0.20 / / 19 4 2.50 0.30 / / 20 4 2.50 0.40 / / 21 4 0.50 0.10 / / 22 4 0.50 0.20 / / 23 4 0.50 0.30 / / 24 4 0.50 0.40 / / 四、海滩
养护组25 4 2.50 0.20 / / 26 4 2.50 0.20 50 1 27 4 2.50 0.20 100 1 28 4 2.50 0.20 150 1 29 4 2.50 0.20 / / 30 4 2.50 0.40 50 1 31 4 2.50 0.40 100 1 32 4 2.50 0.40 150 1 注:D50是沉积物中值粒径。 表 3 台风“塔巴”影响下东沙海滩剖面体积变化(m3/m)
Tab. 3 Profile volumetric changes of Dongsha beach under the impact of typhoon Tapah (m3/m)
典型剖面 剖面单宽体积
总变化2.50 m高程以上的
单宽体积变化2.50 m高程以下的
单宽体积变化DS05 −27.56 −3.66 −23.90 DS11 −36.48 −4.39 −32.09 DS17 −21.15 −2.25 −18.90 DS22 −13.30 −2.59 −10.71 DS26 −1.51 −6.10 4.59 DS30 −11.47 −2.88 −8.59 Average −18.58 −3.65 −14.93 注:2.50 m高程为通常情况下潮位能达到的最高位置。 -
[1] Qi Hongshuai, Cai Feng, Lei Gang, et al. The response of three main beach types to tropical storms in South China[J]. Marine Geology, 2010, 275(1/4): 244−254. [2] 黎树式, 戴志军, 葛振鹏, 等. 强潮海滩响应威马逊台风作用动力沉积过程研究——以北海银滩为例[J]. 海洋工程, 2017, 35(3): 89−98.Li Shushi, Dai Zhijun, Ge Zhenpeng, et al. Sediment dynamic processes of macro-tidal beach in response to Typhoon Rammasun action——A case study of Yintan, Beihai[J]. The Ocean Engineering, 2017, 35(3): 89−98. [3] 郭俊丽, 时连强, 童宵岭, 等. 浙江朱家尖岛东沙海滩对热带风暴“娜基莉”的响应及风暴后的恢复[J]. 海洋学报, 2018, 40(9): 137−147.Guo Junli, Shi Lianqiang, Tong Xiaoling, et al. The response to tropical storm Nakri and the restoration of Dongsha Beach in Zhujiajian Island, Zhejiang Province[J]. Haiyang Xuebao, 2018, 40(9): 137−147. [4] 朱士兵, 李志强. 雷州半岛南部海滩对1720号台风(卡努)的响应研究[J]. 热带海洋学报, 2019, 38(1): 96−104.Zhu Shibing, Li Zhiqiang. Study on beach response to Typhoon Khanun (No. 1720) along southern Leizhou Peninsula[J]. Journal of Tropical Oceanography, 2019, 38(1): 96−104. [5] 戴志军, 陈子燊, 张清凌. 波控岬间海滩剖面短期变化过程分析[J]. 热带地理, 2001, 21(3): 266−269.Dai Zhijun, Chen Zishen, Zhang Qingling. An analysis on temporal variation process of a wave-dominated beach profile between headlands[J]. Tropical Geography, 2001, 21(3): 266−269 [6] 蔡锋, 雷刚, 苏贤泽, 等. 台风“艾利”对福建沙质海滩影响过程研究[J]. 海洋工程, 2006, 24(1): 98−109.Cai Feng, Lei Gang, Su Xianze, et al. Study on process response of Fujian beach geomorphology to typhoon Aere[J]. The Ocean Engineering, 2006, 24(1): 98−109. [7] 陈子燊, 王扬圣, 黄德全, 等. 台风影响下海滩前滨剖面时间变化差异性分析[J]. 热带海洋学报, 2009, 28(6): 1−6.Chen Zishen, Wang Yangsheng, Huang Dequan, et al. Analysis on temporal change of foreshore profile under tropical storms[J]. Journal of Tropical Oceanography, 2009, 28(6): 1−6. [8] Coco G, Sénéchal N, Rejas A, et al. Beach response to a sequence of extreme storms[J]. Geomorphology, 2014, 204: 493−501. doi: 10.1016/j.geomorph.2013.08.028 [9] Masselink G, Short A D. The effect of tide range on beach morphodynamics and morphology: a conceptual beach model[J]. Journal of Coastal Research, 1993, 9(3): 785−800. [10] Jackson N L, Nordstrom K F, Farrell E J. Longshore sediment transport and foreshore change in the swash zone of an estuarine beach[J]. Marine Geology, 2017, 386: 88−97. doi: 10.1016/j.margeo.2017.02.017 [11] 匡翠萍, 董智超, 顾杰, 等. 岬湾海岸海滩养护工程对水体交换的影响[J]. 同济大学学报(自然科学版), 2019, 47(6): 769−777.Kuang Cuiping, Dong Zhichao, Gu Jie, et al. Influence of beach nourishment project on water exchange in headland-bay coast[J]. Journal of Tongji University (Natural Science), 2019, 47(6): 769−777. [12] 梁丙臣, 朱梅溪, 屈智鹏, 等. 不同补沙方案对海滩剖面影响的数值模拟对比分析[J]. 海洋学报, 2021, 43(11): 136−145.Liang Bingchen, Zhu Meixi, Qu Zhipeng, et al. Comparative analysis on numerical simulation of the impacts of different beach nourishment schemes on beach profile[J]. Haiyang Xuebao, 2021, 43(11): 136−145. [13] Anthony E J, Aagaard T. The lower shoreface: morphodynamics and sediment connectivity with the upper shoreface and beach[J]. Earth-Science Reviews, 2020, 210: 103334. doi: 10.1016/j.earscirev.2020.103334 [14] Valiente N G, Masselink G, Scott T, et al. Role of waves and tides on depth of closure and potential for headland bypassing[J]. Marine Geology, 2019, 407: 60−75. doi: 10.1016/j.margeo.2018.10.009 [15] 朱磊, 杨燕雄, 杨雯, 等. 工程养护海滩对“803”风暴潮的响应过程研究[J]. 海洋通报, 2019, 38(1): 102−114.Zhu Lei, Yang Yanxiong, Yang Wen, et al. Study on the response process of nourished beach to "803" storm surge[J]. Marine Science Bulletin, 2019, 38(1): 102−114. [16] 周嬴涛, 何俊彪, 朱钰, 等. “圆规”台风后海口铺前湾沙滩恢复效率与主控因素研究[J]. 应用海洋学学报, 2024, 43(3): 554−564.Zhou Yingtao, He Junbiao, Zhu Yu, et al. Recovery efficiency and leading factor of sandy beach in Puqian Bay after Typhoon Kompasu[J]. Journal of Applied Oceanography, 2024, 43(3): 554−564. [17] Guo Junli, Shi Lianqiang, Pan Shunqi, et al. Monitoring and evaluation of sand nourishments on an embayed beach exposed to frequent storms in eastern China[J]. Ocean & Coastal Management, 2020, 195: 105284. [18] 曹惠美, 蔡锋, 苏贤泽, 等. 海滩养护和修复工程的动态平衡滨线设计研究 ——以浙江省苍南县炎亭湾海滩修复工程设计为例[J]. 应用海洋学学报, 2018, 37(2): 185−193.Cao Huimei, Cai Feng, Su Xianze, et al. Study on the plan of dynamic equilibrium shoreline for beach nourishment and restoration—Taking the plan of the beach nourishment in Yanting Bay, Cangnan County, Zhejiang Province as an example[J]. Journal of Applied Oceanography, 2018, 37(2): 185−193. [19] Guo Junli, Shi Lianqiang, Chen Shenliang, et al. Sand-mud transition dynamics at embayed beaches during a typhoon season in eastern China[J]. Marine Geology, 2021, 441: 106633. doi: 10.1016/j.margeo.2021.106633 [20] 张朝阳. 朱家尖岛近岸海域潮流和泥沙特性研究[D]. 上海: 华东师范大学, 2013.Zhang Zhaoyang. Study on Tidal current and Sediment characteristics of Zhujiajian island offshore area[D]. Shanghai: East China Normal University, 2013. [21] 《中国海岛志》编纂委员会. 中国海岛志: 浙江卷(第二册): 舟山群岛南部[M]. 北京: 海洋出版社, 2014: 371−458.Compilation Committee of China Island Chronicles. Records of Chinese Islands (Zhejiang Volume 2th Fasicule)[M]. Beijing: China Ocean Press, 2014: 371−458. (查阅网上资料, 未找到对应的英文翻译, 请确认) [22] 程林, 时连强, 夏小明, 等. 浙江朱家尖岛东沙海滩沉积与地貌动态变化[J]. 海洋地质与第四纪地质, 2014, 34(1): 37−44.Cheng Lin, Shi Lianqiang, Xia Xiaoming, et al. Sedimentation and recent morphological changes at Dongsha beach, Zhuajiajian Island, Zhejiang Province[J]. Marine Geology & Quaternary Geology, 2014, 34(1): 37−44. [23] Shi Lianqiang, Guo Junli, Chen Shenliang, et al. Morphodynamic response of an embayed beach to different typhoon events with varying intensities[J]. Acta Oceanologica Sinica, 2023, 42(7): 51−63. doi: 10.1007/s13131-023-2164-z [24] 郭俊丽, 时连强, 陈沈良, 等. 台风季节朱家尖岛砂、砾质岬湾海滩的不同沉积地貌动态变化[J]. 热带海洋学报, 2022, 41(4): 82−96.Guo Junli, Shi Lianqiang, Chen Shenliang, et al. Dynamic variations of different sedimentary geomorphology of sandy and gravel embayed beaches on the Zhujiajian Island during typhoon season[J]. Journal of Tropical Oceanography, 2022, 41(4): 82−96. [25] Burvingt O, Masselink G, Scott T, et al. Climate forcing of regionally-coherent extreme storm impact and recovery on embayed beaches[J]. Marine Geology, 2018, 401: 112−128. doi: 10.1016/j.margeo.2018.04.004 [26] Warner J C, Geyer W R, Lerczak J A. Numerical modeling of an estuary: a comprehensive skill assessment[J]. Journal of Geophysical Research: Oceans, 2005, 110(C5): C05001. [27] The wave climate[J]. Elsevier Oceanography Series, 2000, 64: 183−206. (查阅网上资料, 未找到对应的作者信息, 请确认)(查阅网上资料, 请核对文献类型及格式) [28] Pang Wenhong, Dai Zhijun, Ma Binbin, et al. Linkage between turbulent kinetic energy, waves and suspended sediment concentrations in the nearshore zone[J]. Marine Geology, 2020, 425: 106190. doi: 10.1016/j.margeo.2020.106190 [29] Jana S. Short-term estimation of beach sedimentation pattern in the mixed-energy environment at Digha coast, India[J]. Journal of Sedimentary Environments, 2022, 7(1): 1−19. doi: 10.1007/s43217-021-00081-4 [30] 庞文鸿. 中强潮海滩沉积动力过程研究——以北海银滩为例[D]. 上海: 华东师范大学, 2021.Pang Wenhong. Sedimentary dynamic processes in meso-macro tidal beaches—a case study of Yintan Beach in Beihai City[D]. Shanghai: East China Normal University, 2021. [31] Komar P D. Beach Processes and Sedimentation[M]. New Jersey: Prentice-Hall, Inc. , 1976. [32] 束芳芳, 蔡锋, 戚洪帅, 等. 不同沉积物养护海滩对台风响应的差异性研究[J]. 海洋学报, 2019, 41(7): 103−115.Shu Fangfang, Cai Feng, Qi Hongshuai, et al. Study on various response to typhoon of nourished beaches with different sediments[J]. Haiyang Xuebao, 2019, 41(7): 103−115. [33] Seymour R, Guza R T, O’Reilly W, et al. Rapid erosion of a small southern California beach fill[J]. Coastal Engineering, 2005, 52(2): 151−158. doi: 10.1016/j.coastaleng.2004.10.003 [34] Castelle B, Marieu V, Bujan S, et al. Impact of the winter 2013-2014 series of severe western Europe storms on a double-barred sandy coast: beach and dune erosion and megacusp embayments[J]. Geomorphology, 2015, 238: 135−148. doi: 10.1016/j.geomorph.2015.03.006 [35] Masselink G, Scott T, Poate T, et al. The extreme 2013/2014 winter storms: hydrodynamic forcing and coastal response along the southwest coast of England[J]. Earth Surface Processes and Landforms, 2016, 41(3): 378−391. doi: 10.1002/esp.3836 [36] Loureiro C, Ferreira Ó, Cooper J A G. Geologically constrained morphological variability and boundary effects on embayed beaches[J]. Marine Geology, 2012, 329-331: 1−15. doi: 10.1016/j.margeo.2012.09.010 -