留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

胶州湾沉积物中有机硫来源及成因机制的研究

黄香利 朱茂旭 陈良进 李铁

黄香利, 朱茂旭, 陈良进, 李铁. 胶州湾沉积物中有机硫来源及成因机制的研究[J]. 海洋学报, 2014, 36(6): 50-57.
引用本文: 黄香利, 朱茂旭, 陈良进, 李铁. 胶州湾沉积物中有机硫来源及成因机制的研究[J]. 海洋学报, 2014, 36(6): 50-57.
Huang Xiangli, Zhu Maoxu, Chen Liangjin, Li Tie. Sources and formation mechanisms of organic sulfur in Jiaozhou Bay sediments[J]. Haiyang Xuebao, 2014, 36(6): 50-57.
Citation: Huang Xiangli, Zhu Maoxu, Chen Liangjin, Li Tie. Sources and formation mechanisms of organic sulfur in Jiaozhou Bay sediments[J]. Haiyang Xuebao, 2014, 36(6): 50-57.

胶州湾沉积物中有机硫来源及成因机制的研究

基金项目: 国家自然科学基金(41076045);山东省自然科学基金(ZR2011DM003)。

Sources and formation mechanisms of organic sulfur in Jiaozhou Bay sediments

  • 摘要: 有机硫是海洋沉积物中重要的硫形态,其中成岩有机硫对有机质保存和微量元素形态具有重要影响。利用化学提取及硫稳定同位素研究了胶州湾沉积物中碱可提取的腐殖酸硫(HA-S)、富里酸硫(FA-S)以及铬不可还原有机硫(non-CROS)的垂直分布、来源及形成机制。结果表明,non-CROS、HA-S以及FA-S的含量范围分别为19.1~52.6、3.35~7.82 和27.3~38.6 μmol/g,均处于其他许多近海沉积物中含量的低值区,且3者均为海洋生物有机硫和成岩有机硫的混合物。HA-S和non-CROS以海洋生物有机硫为主,其份数分别为65%~68%和67%~77%,而FA-S则以成岩有机硫为主(54%~73%)。相对于生物有机硫,成岩有机硫更易被碱和酸性Cr(Ⅱ)溶液提取,因此腐殖质硫和non-CROS都不能全面反映沉积物中有机硫的组成和来源。黄铁矿和腐殖质中成岩有机硫含量随深度的同步增加表明黄铁矿形成并未明显地竞争性抑制有机质硫化。
  • Anderson T F,Pratt L M. Isotopic evidence for the origin of organic sulfur and elemental sulfur in marine sediments//Vairavamurthy M A,Schoonen M A A. Geochemical Transformations of Sedimentary Sulfur. Washington D C: ACS Symposium Series 612,1995: 378-396.
    Werne J P,Lyons T W,Hollander D J,et al. Investigating pathways of diagenetic organic matter sulfurization using compound-specific sulfur isotope analysis[J]. Geochimica et Cosmochimica Acta,2008,72: 3489-3502.
    Ferdelman T G,Church T M,Luther G W. Sulfur enrichment of humic substances in a Delaware salt marsh sediment core[J]. Geochimica et Cosmochimica Acta,1991,55: 979-988.
    Sinninghe Damsté J S,Eglinton T I,De Leeuw J W. Analysis,structure and geochemical significance of organically-bound sulphur in the geosphere: state of the art and future research[J]. Organic Geochemistry,1990,16: 1077-1101.
    Werne J P,Hollander D J,Lyons T W,et al. Organic sulfur biogeochemistry: Recent advances and future research directions//Amend J P,Edwards K J,Lyon T W. Sulfur biogeochemistry-past and present. Boulder: Geological Society of America,2004: 135-150.
    Hoffmann M,Mikutta C,Kretzschmar R. Bisulfide reaction with natural organic matter enhances arsenite sorption: insights from X-ray absorption spectroscopy[J]. Environmental Science & Technology,2012,46: 11788-11797.
    Xia K,Skyllberg U,Bleam W,et al. X-ray absorption spectroscopic evidence for the complexation of Hg (II) by reduced sulfur in soil humic substances[J]. Environmental Science & Technology,1999,33: 257-261.
    Canfield D E,Boudreau B P,Mucci A,et al. The early diagenetic formation of organic sulfur in the sediments of Mangrove Lake,Bermuda[J]. Geochimica et Cosmochimica Acta,1998,62: 767-781.
    Brüchert V. Early diagenesis of sulfur in estuarine sediments: the role of sedimentary humic and fulvic acids[J]. Geochimica et Cosmochimica Acta,1998,62: 1567-1586.
    Brüchert V,Pratt L M. Contemporaneous early diagenetic formation of organic and inorganic sulfur in estuarine sediments from St. Andrew Bay,Florida,USA[J]. Geochimica et Cosmochimica Acta,1996,60: 2325-2332.
    Passier H F,Bőttcher M E,De Lange G J. Sulphur enrichment in organic matter of eastern Mediterranean sapropels: a study of sulphur isotope partitioning[J]. Aquatic Geochemistry,1999,5: 99-118.
    Canfield D E,Raiswell R,Westrich J T,et al. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales[J]. Chemical Geology,1986,54: 149-155.
    Liu S M,Zhu B D,Zhang J,et al. Environmental change in Jiaozhou Bay recorded by nutrient components in sediments[J]. Marine Pollution Bulletin,2010,60: 1591-1599.
    Dai J,Song J,Li X,et al. Environmental changes reflected by sedimentary geochemistry in the last hundred years of Jiaozhou Bay,North China[J]. Environmental Pollution,2007,145: 656-667.
    刘运令,汪亚平,高建华,等. 胶州湾铅-210比活度的分布模式及百年尺度的沉积速率[J]. 海洋学报,2010,32(1): 83-93.
    Hsieh Y P,Yang C H. Diffusion methods for the determination of reduced inorganic sulfur species in sediments[J]. Limnology and Oceanography,1989,34: 1126-1130.
    Cline J D. Spectrophotometric determination of hydrogen sulfide in natural waters[J]. Limnology and Oceanography,1969,14: 454-458.
    Ding T,Valkiers S,Kipphardt H,et al. Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with a reassessment of the atomic weight of sulfur[J]. Geochimica et Cosmochimica Acta,2001,65: 2433-2437.
    Xiao H Y,Liu C Q. The elemental and isotopic composition of sulfur and nitrogen in Chinese coals[J]. Organic Geochemistry,2011,42: 84-93.
    Tuttle M L,Goldhaber M B,Williamson D L. An analytical scheme for determining forms of sulphur in oil shales and associated rocks[J]. Talanta,1986,33: 953-961.
    Zhu M X,Liu J,Yang G P,et al. Reactive iron and its buffering capacity towards dissolved sulfide in sediments of Jiaozhou Bay,China[J]. Marine Environmental Research,2012,80: 46-55.
    Zhu M X,Shi X N,Yang G P,et al. Formation and burial of pyrite and organic sulfur in mud sediments of the East China Sea inner shelf: constraints from solid-phase sulfur speciation and stable sulfur isotope[J]. Continental Shelf Research,2013,54: 24-36.
    蒲晓强,钟少军,刘飞,等. 胶州畾牎?榳滣?淯畩搭?猖敩摢椐涄斧渶瓠?潛晊?琮栠攰??慦猬琲‰?根椬渳愸?匨攴愩???漲渳猭琳爳愳椮渼瑢獲 ̄潛渲?潝爠楃杨楡湭獢?慲湳搠?瀬慈瑯桬睬慩祢獡?潧晨?潊爬杓慮湩楶捥?獹甠汃昬略牴?晡潬爮洠慉瑲楯潮測孳?嵬??佲爬条慮湤椠捣??敢潯据栠敤浩楡獧瑥牮祥??びㄠ???????????? of Tomales Bay,California[J]. Estuaries,2000,23: 1-9.
    Hoefs J. Stable Isotope Geochemistry[M]. Berlin: Springer,2009.
    Mossmann J R,Aplin A C,Curtis C D,et al. Geochemistry of inorganic and organic sulphur in organic-rich sediments from the Peru Margin[J]. Geochimica et Cosmochimica Acta,1991,55: 3581-3595.
    Zaback D A,Pratt L M. Isotopic composition and speciation of sulfur in the Miocene Monterey formation: reevaluation of sulfur reactions during early diagenesis in marine environments[J]. Geochimica et Cosmochimica Acta,1992,56: 763-774.
    Vairavamurthy M A,Maletic D,Wang S,et al. Characterization of sulfur-containing functional groups in sedimentary humic substances by X-ray absorption near-edge structure spectroscopy[J]. Energy & Fuels,1997,11: 546-553.
    Kaplan I R,Rittenberg S C. Microbiological fractionation of sulphur isotopes[J]. Journal of General Microbiology,1964,34: 195-212.
    Trust B A,Fry B. Stable sulphur isotopes in plants: a review[J]. Plant,Cell & Environment,1992,15: 1105-1110.
    Habicht K S,Canfield D E. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments[J]. Geochimica et Cosmochimica Acta,1997,61: 5351-5361.
    Brüchert V,Knoblauch C,Jrgensen B B. Controls on stable sulfur isotope fractionation during bacterial sulfate reduction in Arctic sediments[J]. Geochimica et Cosmochimica Acta,2001,65: 763-776.
    Price F T,Shieh Y N. Fractionation of sulfur isotopes during laboratory synthesis of pyrite at low temperatures[J]. Chemical Geology,1979,27: 245-253.
    Bőttcher M E,Smock A M,Cypionka H. Sulfur isotope fractionation during experimental precipitation of iron(II) and manganese(II) sulfide at room temperature[J]. Chemical Geology,1998,146: 127-134.
    Zhu M X,Huang X L,Yang G P,et al. Speciation and stable isotopic compositions of humic sulf
  • 加载中
计量
  • 文章访问数:  1518
  • HTML全文浏览量:  16
  • PDF下载量:  1400
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-19

目录

    /

    返回文章
    返回