留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大河影响下的陆架边缘海沉积有机碳的再矿化作用

姚鹏 郭志刚 于志刚

姚鹏, 郭志刚, 于志刚. 大河影响下的陆架边缘海沉积有机碳的再矿化作用[J]. 海洋学报, 2014, 36(2): 23-32.
引用本文: 姚鹏, 郭志刚, 于志刚. 大河影响下的陆架边缘海沉积有机碳的再矿化作用[J]. 海洋学报, 2014, 36(2): 23-32.
Yao Peng, Guo Zhigang, Yu Zhigang. Remineralization of sedimentary organic carbon in river dominated ocean margins[J]. Haiyang Xuebao, 2014, 36(2): 23-32.
Citation: Yao Peng, Guo Zhigang, Yu Zhigang. Remineralization of sedimentary organic carbon in river dominated ocean margins[J]. Haiyang Xuebao, 2014, 36(2): 23-32.

大河影响下的陆架边缘海沉积有机碳的再矿化作用

基金项目: 国家自然科学基金面上项目"不同来源有机碳在长江口-东海内陆架的水动力分选研究"(41176063);国家自然科学基金重大国际(地区)合作研究项目"长江口及邻近海域底边界层生物地球化学过程研究"(40920164004);国家自然科学基金创新研究群体项目"海洋有机生物地球化学(41221004)"。

Remineralization of sedimentary organic carbon in river dominated ocean margins

  • 摘要: 大河影响下的陆架边缘海(RiOMars)是陆源有机碳的主要沉积汇,是陆海相互作用最重要的区域,在全球碳的生物地球化学循环中发挥着重要作用。受到RiOMars系统内频繁的物理和生物等改造作用的影响,该区沉积的有机碳并没有得到很好地保存而被永久埋藏,而是发生了显著的再矿化分解。本文首先对目前常用的基于O2消耗速率和CO2产生速率的两类测定RiOMars系统沉积有机碳再矿化速率的方法进行了介绍,分析了各自的优缺点和适用性,进而从碳的形态转化、表层沉积物混合均匀、形成次氧化的氧化还原条件、有机碳保存效率低、发生反风化作用和微生物发挥着重要作用等几个方面对RiOMars系统沉积物发生再矿化作用时的主要过程和特征进行了剖析,以期深入认识边缘海的再矿化作用及其对边缘海碳汇的影响。
  • Mckee B A, Aller R C, Allison M A, et al. Transport and transformation of dissolved and particulate materials on continental margins Influenced by major rivers: benthic boundary layer and seabed processes[J]. Continental Shelf Research, 2004, 24: 899-926.
    Bianchi T S, Allison M A. Large-river delta-front estuaries as natural "recorders" of global environmental change[J]. Proceedings of the National Academy of Sciences, 2009, 106: 8085-8092.
    Dagg M, Benner R, Lohrenz S E, et al. Transformation of dissolved and particulate materials on continental shelves influenced by large rivers: plume processes[J]. Continental Shelf Research, 2004, 24: 833-858.
    Aller R C. Mobile deltaic and continental shelf muds as suboxic, fluidized bed reactors[J]. Marine Chemistry, 1998, 61: 143-155.
    Hedges J I, Keil R G. Sedimentary organic matter preservation: an assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49: 81-115.
    Meade R H. River-sediment inputs to major deltas[M]// Milliman J D,Haq B U. Sea-level Rise and Coastal Subsidence. London: Kluwer, 1996: 63-85.
    Burdige D J. Preservation of organicmatter inmarine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? [J]. Chem Rev, 2007, 107:467-85.
    Hedges J I, Keil R G, Benner R. What happens to terrestrial organic matter in the ocean? [J]. Org Geochem, 1997, 27:195-212.
    Gordon E S, Goi M A. Sources and distribution of terrigenous organic matter delivered by the Atchafalaya River to sediments in the northern gulf of Mexico[J]. Geochim Cosmochim Acta, 2003, 67:2359-2375.
    Borges A V. Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the Coastal Ocean? [J]. Estuaries, 2005, 28: 3-27.
    Cai W J, Dai M H, Wang Y C. Air-sea exchange of carbon dioxide in ocean margins: A province-based synthesis[J]. Geophysical Research Letters, 2006, 33, L12603.
    Bianchi T S. The role of terrestrially derived organic carbon in the coastal ocean: A changing paradigm and the priming effect[J]. PNAS, 2011, 108(49): 19473-19481.
    Zonneveld K A F, Versteegh G J M, Kasten S. Selective preservation of organic matter in marine environments-processes and impact on the fossil record[J]. Biogeosciences Discussions, 2009, 6: 6371-6440.
    Neibauer J. Carbon remineralization rates in marine sediments beneath areas of high and low primary productivity in the Galapagos Archipelago . Washington: University of Washington, 2006.
    Sauter E J, Schlüter M, Suess E. Organic carbon flux and remineralization in surface sediments from the northern North Atlantic derived from pore-water oxygen microprofiles[J]. Deep-Sea Research I, 2001, 48: 529-553.
    Libes S M. Introduction to marine biogeochemistry[M]. 2nd ed. Amsterdam: Academic Press, 2009:161.
    许昆明, 胡融刚. 微电极技术在沉积物化学原位测量中的应用[J]. 地球科学进展, 2006, 21(8): 863-869.
    Epping E, van der Zee C, Soetaert K, et al. On the oxidation and burial of organic carbon in sediments of the Iberian margin and Nazare canyon (NE Atlantic)[J]. Progress in Oceanography, 2002, 52: 399-431.
    Lansard B, Rabouille C, Denis L, et al. Benthic remineralization at the land-ocean interface: Case study of the Rhne River (NW Mediterranean Sea)[J]. Estuarine, Coastal and Shelf Science, 2009, 81: 544-555.
    Martin W R, McNichol A P, McCorkle D C. The radiocarbon age of calcite dissolving at the sea floor: estimates from pore water data[J]. Geochimica et Cosmochimica Acta, 2000, 64: 1391-1404.
    Papadimitriou S, Kennedy H, Thomas D N. Rates of organic carbon oxidation in deep sea sediments in the eastern North Atlantic from pore water profiles of O2 and the δ13C of dissolved inorganic carbon[J]. Marine Geology, 2004, 212: 97-111.
    Martin W R, Sayles F L. CaCO3 dissolution in sediments of the Ceara Rise, western equatorial Atlantic[J]. Geochimica et Cosmochimica Acta, 1996, 60(2): 243-263.
    Ogrinc N, Faganeli J, Pezdic J. Determination of organic carbon remineralization in near-shore marine sediments (Gulf of Trieste, Northern Adriatic) using stable carbon isotopes[J]. Organic Geochemistry, 2003, 34: 681-692.
    Aller R C, Blair N E, Brunskill G J. Early diagenetic cycling, incineration, and burial of sedimentary organic carbon in the central Gulf of Papua (Papua New Guinea)[J]. Journal of Geophysical Research, 2008, 113, F01S09.
    Aller R C, Blair N E, Xia Q, et al. Remineralization rates, recycling and storage of carbon in Amazon shelf sediments[J]. Continental Shelf Research, 1996, 16: 753-786.
    Aller R C, Blair N E. Early diagenetic remineralization of sedimentary organic C in the Gulf of Papua deltaic complex (Papua New Guinea): Net loss of terrestrial C and diagenetic fractionation of C isotopes[J]. Geochimica et Cosmochimica Acta, 2004, 68: 1815-1825.
    Aller R C, Blair N E. Carbon remineralization in the Amazon-Guianas mobile mudbelt: a sedimentary incinerator[J]. Continental Shelf Research, 2006, 26: 2241-2259.
    于志刚, 姚鹏, 甄毓, 等. 河口底边界层生物地球化学过程研究进展[J]. 海洋学报, 2011, 33(5): 1-8.
    姚鹏, 于志刚, 郭志刚. 大河影响下的边缘海沉积有机碳输运与埋藏及再矿化研究进展[J]. 海洋地质与第四纪地质, 2013, 33(1): 154-160.
    Milliman J D, Farnsworth K L. River discharge to the coastal ocean: a global synthesis[M]. Cambridge University Press, 2011:392.
    Alongi D M, Wirasantosa S, Wagey T, et al. Early diagenetic processes in relation to river discharge and coastal upwelling in the Aru Sea, Indonesia[J]. Marine Chemistry, 2012, 140/141: 10-23.
    Regnier P, Dale A W, Arndt S, et al. Quantitative analysis of anaerobic ox?捤祡捴汩敯獮?慯湦搠?瑥桴敨?獮敥搠椨流敏湍琩愠物祮?牭敡捲潩牮摥嬠?嵥???敥潮捴桳椺洠楁挠慭?敤瑥??潮獧洠潰捥桲楳浰楥捣慴??捥瑛慊??㈠ぅ?ひ?????????????????扳爬?嬲??崱??氱愰椶爺?丱‰????氰氮攼牢?刾????吠桓敵?晫慥瑮敳?潋昬?瑓散牨牭敩獤瑴爠楓愬氠?潥牬杩慬湬楥挠?挬愠牥扴漠湡?椮渠?瑥桮整?浩慣爠楲湥敭?敮湥癲楡牬潩湺浡整湩瑯孮?嵩???湨湥甠?副敲癴??慥牳?匠捅極???づ??????????????㈠???执物?嬠??嵯??慨捥歲敮渠穂楡敹???吠???畣浡灹???剝??剃敯癮整物獮敥?睴敡慬琠桓敨牥楬湦朠??捳汥慡祲?浨椬渠攲爰愱氱?映漳爱洺愠琶椴漴渭?‵愸渮搼?潲挾敛愳渴楝挠?敡汯攠浐攬渠瑚?捡祯挠求攬猠??倠敚爠獇瀬攠捥瑴椠癡敬?嬠?嵵??卡捬椬攠湰捲敥??????????????????????扡牬?孺??嵩??椠捯桦愠汳潥灤潩畭汥潮獴?偲???汲汧敡牮?剣????剢慯灮椠摩?挠汭慵祤?浤楥湰敯牳慩汴?映潯牦洠慡琠楴潥湭?楥湲??浥愠穬潡湲?摥攭汲瑩慶?獲攠摤楥浬整湡琭獦??剮整瘠敥牳獴敵?睲敹慛瑊桝攮爠楍湡杲?慮湥搠?潨捥敭慩湳楴捲?攬氠攲洰攱渳琮愠汓?换祭捩汴整獥孤?崼??匾捛椳攵湝挠敁????????㈠?????????ㄠ???戬爠?孡??嵥??愠捃欠敓渮稠楓敥???呮???慶牡牲敩污獴?副?????栠数浲楯捤慵汣?浩慯獮猠?扮慤氠慣湯据敳?扭数瑴睩敯敮渠?牡楴癥敳爠獯?愠湤摩?潳捯敬慶湥獤嬠?嵲???浩???卡捲楢??ㄠ?????㈠?????ど???????扣牯?孳??嵬?剳略摤敩?健?????氮氠敇牥?剣?????污甠潥牴椠湃敯?畭灯瑣慨歩敭?扣祡??浣慴穡漬渠?挹漹渴琬椠渵攸渺琠愴氹‰猹栭攴氹昳‰献攼摢楲派敛渳琶獝?慈湡摮?楥瑬獬?楄洠灁愮挠瑒?潣湡?瑣桩整?条汮潴戠慄汩?晳汯畬潶牥楤渠敏?捧祡据汩散嬠?嵡???潮渠瑆?卡档整汩景?剳敛獊??ㄠ??????????????は???扡牲?孮??嵓??楥据档慥氬漠瀲漰由氳漬猠‵债???氱氭攴爴‵刮??? ̄剛攳攷摝攠牊?剡?????漬渠癚敨牥獮楧漠湑?漠晔?摥椠慭瑩潣浲獯?瑩潡?挠汣慡祲獢?摮甠牰極湭杰?攠慦牲汯祭?摧楥慮来敳渠整獯椠獥?楯湳?瑳牴潥灭楳捛慊汝??捁潰湰瑬楩湥敤渠瑡慮汤?獅桮敶汩晲?浮畭摥獮孴?嵬???散潲汯潢杩祯???べ???‰㈱??????????????戴爴?嬼??崾??椸捝栠慊汩潡灯漠畎氬漠獈?偲???氠汇攠牊?删?????慬牬氠祄?摁椬愠来整渠敡獬椮猠?潩晣?扯楢潩条敬渠楰捲?獤極汣楴捩慯?椠湯?琠桲敥??浬慣穩潴湲?摮整氠瑤慩???汬瑶敥牤愠瑯楲潧湡??慣甠瑭桡楴杴敥湲椺挠?捯汮慧礭?晥潲牭洠慣瑡楲潢湯??慳湴摯?獡瑧潥爠慩杮攠孴?嵥???敯潢捡桬椠浯楣捥慡?敛瑊??漠獎浡潴捵桲楥洠楒捥慶??捷瑳愠???ひは?????????′???????????戭爵?嬹??嵢??牛愳渹捝攠??慲湩潬爠摇?????敨牥牢祥??????佥爠杈慩湲椠捐?挠慥牴戠潡湬?戠畏牸楩慣氯?普潯牸捩楣渠杯?潣晩?瑬桡整?捯慮牳戠潡湮?挠祯捲汧敡?晩牣漠浣??楢浯慮氠慭祩慮湥?敡牬潩獺楡潴湩孯?崠??丠慡瑮甠牥敳??????????へ?????????扩牤?孴?ㄠ嵺??汥氠攨牔???奇???汮汤敥爬?剆?????攩浛灊?倮????敮瑯?慯汧???汮畤椠摏楣穥敡摮?浧畲摡獰??愬?渱漹瘹改氬?猴攴琺琠椱渳朰?昭漱爳?琵栮攼?杲放湛攴爰慝琠楓潵渠?漠晃?戠楈潵獨瀠桃攠牁攮?搼楳癵数爾猲椱琰礼?瑳桵牰漾畐杢栬?朼敳潵汰漾朱椳挷?琯楳浵数嬾?嵳???敤漠戼楳潵汰漾朲礳?※监??ふ? ̄????????????扵牰?子?㈠嵩??畅穡祳慴欠潃癨?奮???牥楡攠摳敥汤??????区琠慳桯牵????刬攠癰楡整睨?潡晹?洠敡据桤愠湢極獤浧獥?慳渠摯?焠畳慥湤瑩業晥楮捴慳琠楡潮湤?潲晡?灩牯椠浮極湣杬?敤晥晳敛捊瑝献嬠?嵡??卮潥椠汇??楬潯汧潹本礠′?‰?椬漠挱核攳洺椠猱琶爳礭??劳??ぢ? ̄?名??ㄠ?????????Guo Z G, Yang Z S, et al. Tracking historical lead pollution in the coastal area adjacent to the Yangtze River Estuary using lead isotopic compositions[J]. Environmental Pollution, 2008, 156: 1325-1331.
    Aller R C, Madrid V, Chistoserdov A, et al. Unsteady diagenetic processes and sulfur biogeochemistry in tropical deltaic muds: Implications for oceanic isotope
  • 加载中
计量
  • 文章访问数:  1685
  • HTML全文浏览量:  17
  • PDF下载量:  1762
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-22

目录

    /

    返回文章
    返回