削弱水分影响的潮滩表层沉积物遥感分类方法研究
The study on a surface sediment classification methocl by weakening moisture influence in intertidal zone using remote sensing
-
摘要: 潮滩沉积物中的水分掩盖了沉积物本身的光谱信息,不利于沉积物遥感分类。利用江苏大丰潮滩沉积物在不同含水量下的398条实测光谱曲线数据,基于线性光谱分解方法定量化分析了沉积物光谱对含水量变化的响应,建立削弱水分影响的潮滩表层沉积物组分(砂、粉砂、黏土)含量反演模型,应用于Hyperion高光谱遥感影像,获得沉积物组分的空间分布,并结合Shepard三角分类法实现了潮滩表层沉积物的自动分类。研究结果表明:(1)当沉积物含水量增加时,沉积物光谱中水分权重以含水量的2倍速率增加,含水量大于25%,则水分对光谱的影响占主导作用;(2)2 143 nm波段反射率对沉积物的含水量变化敏感,利用2 143 nm波段反射率进行潮滩沉积物的含水量反演,模型拟合度r2可达0.81;(3)983,1 134 nm波段反射率对沉积物组分含量反演敏感,将含水量与沉积物组分敏感波段一起建立多元线性回归方程,可有效削弱水分的影响,适用于高含水量潮滩区的沉积物组分含量反演;(4)将组分反演结果结合Shepard分类,可实现潮滩沉积物分类,得到潮滩沉积物类型的空间分布特征,分类精度为75.93%,Kappa系数为0.6。Abstract: The spectral signal of sediment on intertidal flats is easily concealed as the result of high moisture inside,which is the main obstacle for retrieving sediment types by means of remote sensing technology.To improve the accuracy of quantifying sediment characteristics,the effects of varying moisture must be removed.With the use of in situ samples of sediment collected in Dafeng,Jiangsu Province,China and its spectra measured under different moisture conditions in the laboratory,a linear spectral unmixing technology is employed to obtain moisture abundance and analyze the spectral response of sediment to varied moisture content.The moisture content layer of study area retrieved by a linear regression techniology on Hyperion image is introduced as variable into multiple variable linear regression equations.The models,which can eliminate the moisture impact,are constructed and applied in Hyperion image to retrieve components'(sand,silt and clay) spatial distribution.Retrieved components are input to Shepard classification system to map the sediment types of intertidal flats automatically.The results are shown as below:(1)the spectral contribution from water is dominant while the moisture content is higher than 25% and its value increases two times with the rate of moisture content increasing;(2) the reflectance of samples in 2 143 nm is sensitive to the variation of moisture,and square (r2) of correlation coefficient of constructed moisture model is 0.81;(3)the reflectance of samples in 983 and 1 134 nm is sensitive to the content of each component,these two bands combined moisture sensitive band are utilized to construct the multiple variable linear regression equation,which can effectively remove the moisture impact on wet samples;(4)the overall classification accuracy is 75.93%,and Kappa coefficient reaches 0.60.This method is an effective way to map the spatial distribution characteristic of sediment types accurately on muddy intertidal flats.
-
SRENSEN T H,BARTHOLDY J,CHRISTLANSEN C,et al.Intertidal surface type mapping in the Danish Wadden Sea[J].Marine Geology,2006,235:87-99. TYLER A N,SANDERSON D C W,SCOTT E M,et al.Accounting for spatial variability and fields of view in environmental gamma ray spectrometry[J].Journal of Environmental Radioactivity,1996,33:213-235. YATES M G,JONES A R,MCGRORTY S,et al.The use of satellite imagery to determine the distribution of intertidal surface sediments of the Wash,England [J].Estuarine,Coastal and Shelf Science,1993,36:333-334. RTY J H,NA Y H,WON J S,et al.A critical grain size for Landsat ETM+investigations into intertidal sediments:a case study of the Gomso tidal flats,Korea [J].Estuarine, Coastal and Shelf Science,2004,60 (3):491-502. 张东,张鹰,李欢.基于组分反演的高光谱潮滩表层沉积物自动分类研究[J].海洋学报,2008,30(3):62-71. RAINEY M P,TYLER A N,BRYANT R G,et al.The influence of surface and interstitial moisture on the spectral characteristics of intertidal sediments:implications for airborne image acquisition and processing[J]. International Journal of Remote Sensing,2000,21:3025-3038. RAINEY M P,TYLER A N,CILVEAR D J,et al.Mapping intertidal estuarine sediment grain size distributions through airborne remote sensing[J]. Remote Sensing of Environment,2003,86:480-490. BARTHOLDY J,FOLVING S.Sediment classifcation and surface type mapping in the Danish Wadden Sea by remote sensing [J]. Netherlands Journal of Sea Research,1986,20:337-345. VANDER WAL D,HERMAN P M J,VAN DEN DOOL A W,et al.Characterization of surface roughness and sediment texture of intertidal flats using ERS SAR imagery [J].Remote Sensing of Environment,2005,98(1):96-109. CHOI J K,RYU J H,LEE Y K,et al.Quantitative estimation of intertidal sediment characteristics using remote sensing and GIS[J].Estuarine,Coastal and Shelf Science,2010,88:125-134. LOBELL D B,ASNER G P.Moisture effects on soil reflectance [J].Soil Science Society of America Journal,2002,66:722-727. 王爱军,汪亚平,杨旸.江苏王港潮滩表层沉积物特征及输运趋势[J].沉积学报,2004,22(1):124-129. 任美锷.江苏省海岸带和海涂资源综合调查[M].北京:海洋出版社,1986:66-100. CHAICHOKE V.Consideration of smoothing techniques for hyperspectral remote sensing[J].Photogrammetry & Remote Sensing,2006,60(2):91-99. 袁金国,牛铮,王锡平.基于FLAASH的Hyperion高光谱影响大气校正[J].光谱学与光谱分析,2009,29(5):1181-1185. 张东,张鹰,李欢.海岸带星载高光谱遥感影像预处理方法[J].海洋科学进展,2009,27(1):92-97. 谭炳香,李增元,陈尔学,等.EO1 Hyperion高光谱数据的预处理[J].遥感信息,2005,6:36-41. RYU J H,WON J S,MIN K D.Waterline extraction from Landsat TM data in a tidal flat [J].Remote Sensing of Environment,2002,83:442-456. VIKHAMAR D,SOLBERG R.Snowcover mapping in forests by constrained linear spectral unmixing of MODIS data[J].Remote Sensing of Environment,2003,88:309-323. 万余庆,谭克龙,周日平.高光谱遥感应用研究[M].北京:科学出版社,2006:111-112,123-125. 朱建平,殷瑞飞.SPSS在统计分析中的应用[M].北京:清华大学出版社,2007:101-130. -
计量
- 文章访问数: 1379
- HTML全文浏览量: 16
- PDF下载量: 945
- 被引次数: 0