留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北冰洋水体对格陵兰海混合增密对流的可能影响分析

史文奇 赵进平

史文奇, 赵进平. 北冰洋水体对格陵兰海混合增密对流的可能影响分析[J]. 海洋学报, 2012, 34(6): 19-29.
引用本文: 史文奇, 赵进平. 北冰洋水体对格陵兰海混合增密对流的可能影响分析[J]. 海洋学报, 2012, 34(6): 19-29.
SHI Wenqi, ZHAO Jinping. Analysis of possible effects of various water masses in Arctic Ocean to Greenland Sea isopycnal cabbeling convection[J]. Haiyang Xuebao, 2012, 34(6): 19-29.
Citation: SHI Wenqi, ZHAO Jinping. Analysis of possible effects of various water masses in Arctic Ocean to Greenland Sea isopycnal cabbeling convection[J]. Haiyang Xuebao, 2012, 34(6): 19-29.

北冰洋水体对格陵兰海混合增密对流的可能影响分析

基金项目: 国家自然科学基金(40876006;40631006)。

Analysis of possible effects of various water masses in Arctic Ocean to Greenland Sea isopycnal cabbeling convection

  • 摘要: 格陵兰海内发生的等密度混合后产生的增密对流是重要的对流现象之一。北冰洋正在发生快速变化,其内水团变性以及环流系统的改变都将使格陵兰海等密度混合对流发生明显变化,继而对全球气候变化产生影响。以往关于等密度混合对流的研究很少,大都集中在对流发生海域。由于等密度混合的主体是大西洋回流水与北冰洋流出水体,本文目的是探讨北极内部不同海域的水体会对混合增密对流造成的可能影响。文中定义了有效对流速度,强调水平温度梯度和垂向层化强度是影响有效对流速度的决定性因素;水平温度差越大,垂向层化越弱,产生的对流越强。发生在东格陵兰极锋处的有效对流都是大西洋的水体,一部分是在格陵兰海回流的大西洋回流水;一部分是在北冰洋潜沉并回流的北极大西洋水,该水体在北冰洋循环的时间越长,温度差越大,产生的有效对流越强。而横越北冰洋的太平洋水因密度过低而不能参与等密度混合对流,加拿大海盆主盐跃层之上的水体也都不能参与对流。北冰洋几个海盆深层水的温度差异明显,有可能与格陵兰海深层水形成有效对流;但是,由于深层水流速低、湍流混合弱、水平温度梯度小,是否可以产生有效对流尚不清楚。
  • MACDONALD A, WUNSCH C. The global ocean circulation and heat flux[J]. Nature, 1996, 382: 436-439.
    SCHOTT, FRIEDRICH, VISBECK M, et al. Observations of deep convection in the Gulf of Lions, northern Mediterranean, during the winter of 1991/92[J]. J Phys Oceanogr, 1996, 26: 505-524.
    SEND, UWE, MARSHALL J. Integral effects of deep convection[J]. J Phys Oceanogr, 1995, 25: 855-872.
    PALUSZKIEWICZ T, GARWOOD R W, DENBO D W. Deep convective plumes in the ocean[J]. Oceanography,1994, 7( 2): 37-44.
    CHU P C.Geophysics of deep convection and deep water formation in oceans [R]//CHU P C, GASCARD J C. Deep Convection and Deep Water Formation in the Oceans. Elsevier Oceanography Series, 1991, 57: 3-16.
    MARSHALL J, SCHOTT F. Open-ocean convection: Observations, theory, and models[J]. Rev Geophys, 1999, 37(1): 1-64.
    AKITOMO K. Two types of thermobaric deep convection possible in the Greenland Sea[J]. J Geophys Res, 2011, 116(C08012): 1-9.
    McDOUGALL T J. The relative roles of diapycnal and isopycnal mixing on subsurface water mass conversion[J]. J Phys Oceanogr, 1984, 14: 1577-1589.
    FOFONOFF N P. Nonlinear limits to ocean thermal structure[J]. J Mar Res, 1998, 56: 793-811.
    McDOUGALL T J. Thermobaricity, cabbeling and water-mass conversion[J]. J Geophys Res, 1987, 92(C5): 5448-5464.
    GARRETT C, HORNE E. Frontal circulation due to cabbeling and Double diffusion[J]. J Geophys Res, 1978, 83(C9): 4651-4656.
    HORNE E P W. Interleaving at the subsurface front in the Slope Water off Nova Scotia[J]. J Geophys Res, 1978, 83: 3659-3671.
    MARSH R. Cabbeling due to isopycnal mixing in isopycnic coordinate models[J]. J Phys Oceanogr, 2000, 30: 1757-1775.
    COTTIER F R, VENABLES E J. On the double-diffusive and cabbeling environment of the Arctic Front, West Spitsbergen[J].Polar Res, 2007, 26: 152-159.
    KASAJIMA Y, JOHANNESSEN T. Role of cabbeling in water densication in the Greenland Basin[J]. Ocean Sci, 2009, 5: 247-257.
    RUDELS B, FAHRBACH E, MEINCKE J. The East Greenland Current and its contribution to the Denmark Strait overflow[J]. ICES Journal of Marine Science, 2002, 59: 1133-1154.
    SWIFT J H, AAGAARD K. Seasonal transitions and water mass formation in the Iceland and Greenland seas[J]. Deep-Sea Res,1981, 28: 1107-1129.
    HELLAND-HANSEN B, NANSEN F. The Norwegian Sea, Its Physical Oceanography Based upon the Norwegian Researches 1900-1904. Report on Norwegian Fishery and Marine-Investigations 11(2). Kristiania det Mallingske Bogtrykkeri, 1909.
    何琰,赵进平.北欧海的锋面分布特征及其季节变化[J].地球科学进展,2011, 26(10): 1079-1091.
    RUDELS B, FRIEDRICH H J, QUADFASEL D. The Arctic Circumpolar Boundary Current[J].Deep-Sea Research Ⅱ, 1999, 46: 1023-1062.
    赵进平, 史久新. 北极环极边界流研究及其主要科学问题[J]. 极地研究,2004, 16(3): 159-170.
    WOODGATE R A, AAGAARD K, SWIFT H J, et al. Atlantic water circulation over the Mendeleev Ridge and Chukchi Borderland from thermohaline intrusions and water mass properties[J]. J Geophys Res, 2007, 112, C02005.
    McDOUGALL T J. Neutral surface[J]. J Phys Oceanogr, 1987, 17: 1950-1964.
    RUDELS B, MEYER R, FAHRBACH E, et al. Water mass distribution in Fram Strait and over the Yermak Plateau in summer 1997[J]. Ann Geophys, 2000, 18: 687-705.
    SWIFT J H, AAGAARD K. Seasonal transitions and water mass formation in the Icelandic and Greenland Seas[J]. Deep-Sea Res, 1981, 28: 1107-1129.
    STOUFFER R, Coauthors. Investigating the causes of the response of the thermohaline circulation to past and future climate changes[J].J Climate, 2006, 19: 1365-1387.
    AAGAARD K, SWIFT J H, CARMACK E C. Thermohaline Circulation in the Arctic Mediterranean Seas[J]. Journal of Geophysical Research, 1985, 90 (C3): 4833-4846.
    STRASS V H, FAHRBACH E, SCHAUER U, et al. Formation of Denmark Strait overflow water by mixing in the East Greenland Current[J]. J Geophys Res,1993, 98: 6907-6919.
    李淑江. 北冰洋中层水的分布、变化及其动力过程的研究 [D]. 青岛:中国海洋大学海洋环境学院,2008.
    叶笃正、李麦村,大气运动中的适应问题[M]. 北京:科学出版社,1965:126.
    TVERBERG V, PAVLOV V, HANSEN E, et al. Decadal trends in exchange of heat, salt and deep water between the Arctic Ocean and the Nordic Seas [C]. ICES Annual Science Conference, 2001.
  • 加载中
计量
  • 文章访问数:  1473
  • HTML全文浏览量:  11
  • PDF下载量:  1861
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-20
  • 修回日期:  2012-05-12

目录

    /

    返回文章
    返回