基于Copula函数的海岸增水高度与相应风速的遭遇概率分析
Analysis on encounter probabilities for coastal surge heights and corresponding wind velocities based on Copula functions
-
摘要: 简要论述了Copula理论与几种常用的二维Archimedean Copula函数的性质和适用性。以粤东汕头海域妈屿历年最高增水高度与相应风速的遭遇为研究实例,在分别采用3个三参数的概率分布模式:广义极值分布(GEV)、Weibull分布(WBL)和皮尔逊Ⅲ型(P-Ⅲ)分布对两个边缘分布(年最高增水高度与相应风速)拟合优度检验基础上构建了两变量联合概率分布模型。主要结果如下:(1) 年最大增水高度与相应风速的边缘分布分别服从Weibull分布和P-Ⅲ型分布;(2) 拟合优度检验指标表明二者的最优连接函数为Archimedean Copula类的Gumbel-Hougaard Copula;(3) 重现期介于2~200 a之间的边缘分布与同频率的联合分布的重现水平相对差值大约介于6.7%~22.2%之间;(4) 特定风速设计频率条件下,随年最大增水设计频率的减小,二者的遭遇概率也随之迅速减小;反之,特定增水设计频率随风速条件频率的减小,二者的遭遇概率随之明显增大。Abstract: This paper deals the Copula theory and some of common bivariate Archimedean Copula properties and suitability. A case study is given by using yearly maximum surge heights and corresponding wind speeds collected at Mayu gauge in Shantou sea waters of eastern Guangdong. Bivariate joint distribution model is built up through optimized two marginal distribution of yearly maximum surge heights and corresponding wind speeds by using goodness-of-fit test among three tri-parameter probability distribution model including Generalized extreme value distribution,Pearson pattern three and Weibull distribution. Some conclusions were reached in the following: (1) Optimized marginal distributions of yearly maximum surge heights and corresponding wind speeds can be represented by the Weibull distribution and Pearson pattern three distribution, respectively;(2) Gumbel-Hougaard Copula that belongs to Archimedean copula family is the optimal copula selected by the goodness-of-fit test;(3) Compare to the joint distribution,the relative differences of the special frequency design values of the marginal distribution of yearly maximum surge heights fall in between 6.7% and 22.2% for the return periods between 2 and 200 year;(4) The encounter probabilities of yearly maximum surge heights given wind velocity rapidly decrease along with the minishing design frequency of surge heights;whereas the encounter probabilities increase when the specific surge height frequency along with decrease of wind velocity frequency.
-
严恺,梁其荀.海岸工程[M].北京:海洋出版社,2002. 中华人民共和国行业标准.海港水文规范(JTJ2132-98)[S].北京:人民交通出版社,2000. 董胜,郝小丽,李锋,等.海岸地区致灾台风暴潮的长期分布模式[J].水科学进展,2005,16(1):42-46. 董胜,梁永超,郝小丽.异地海域年极值风暴增水同现规律的探讨[J].中国海洋大学学报,2004,34(3):468-474. 董胜,付新钰,尹春维.龙口港极端设计水位的组合估计[J].中国海洋大学学报,2008,38(2):323-326. 周道成,段忠东.耿贝尔逻辑模型在极值风速和有效波高联合概率分布中的应用[J].海洋工程,2003,21(2):45-51. FAVRE A C,ADLOUNI S E,PERRAULT L,et al. Multivariate hydrological frequency analysis using Copulas[J].Water Resources Research,2004,40(11):1-12. ZHANG L,SINGH V P. Bivariate rainfall frequency distributions using Archimedean copulas[J]. Journal of Hydrology,2007,332:93-109. SHIAU J T,SONG F,NADARAJAH S. Assessment of hydrological droughts for the Yellow River,China,using copulas[J].Hydrological Processes,2007,21:2157-2163. 刘曾美,陈子燊.区间暴雨和外江洪水位遭遇组合的风险[J].水科学进展,2009,20(5):619-625. Joe H. Multivariate Models and Dependence Concepts[M]. London: Chapman & Hall,1997. 秦振江,孙广华,闫同新,等.基于Copula函数的联合概率法在海洋工程中的应用[J].海洋预报,2007,24(2):83-90. NELSEN R B. An Introduction to Copulas[M]//Springer Series in Statistics. New York: Springer,1999. GENEST C,RIVEST L. Statistical inference procedures for bivariate Archimedean copulas[J]. Journal of American Statistical Association,1993,88:1034-1043.
计量
- 文章访问数: 1422
- HTML全文浏览量: 9
- PDF下载量: 1163
- 被引次数: 0