基于多参数差分相关的海洋时序观测数据滤波算法
An algorithm for the difference correlation filter for multi-parameter marine timing observation data
-
摘要: 随着海洋研究的不断深入,对观测的数据质量要求越来越高,为了有效降低实测数据的不确定性,该文以海水CO2分压测算的关键因子温度和盐度的相关实测数据为例,针对仪器平台能够进行多参数同步观测的特点,在假设观测指标的变化在较小的时间空间范围内为一平稳过程的基础上,通过ADF平稳性检验理论证实了大部分原始观测序列满足二阶差分平稳性假设,在此基础上提出了一种基于观测序列差分统计特征的测量数据不确定性的表达方式,以及对离异点数据进行识别和多参数差分相关联合滤波的算法。与常用滤波算法对比分析表明,提出的新算法能够有效融合参数间的相关信息,降低序列的不确定性,并且最大程度地保护原始测量数据。Abstract: With the deepening of the ocean research, more and more demands on the quality of observational data are proposed. In order to effectively reduce the uncertainty of the measured data, the measured temperature and salinity data related to the seawater CO2 partial pressure was taken as an example. As the instrument platform can measure multi-parameter simultaneously, and the measurement indicators can be assumed to change stably in small time and space range. On this basis, most of the original observation sequences were confirmed to meet the hypothesis of second-order differential smoothness by ADF stationary test theory. Then, an expression for observation data uncertainty based on the differential statistical characteristic of observation sequence, and an algorithm of multi-parameter difference correlation Federated Filter based on the outliers recognition, are proposed in this paper. Comparing with the common filtering algorithm, it was found that the new algorithm can effectively integrate the relevant information of parameters, reduce the uncertainty of the sequence, and maximize the protection of the original measurement data.
-
谭娟,沈新勇,李清泉. 海洋碳循环与全球气候变化相互反馈的研究进展[J]. 气象研究与应用,2009,30(1):33-36. 陈立奇,杨绪林,张远辉,等. 海洋-大气二氧化碳通量的观测技术[J]. 海洋技术,2008,27(4):9-12. 史静涛. 海洋环境实时观测数据质量控制方法研究与软件实现.天津:国家海洋技术中心,2010. 赵建虎. 现代海洋测绘[M].武汉:武汉大学出版社,2007. 侍茂崇,高郭平,鲍献文.海洋调查方法[M].青岛:青岛海洋大学出版社,2000. 国家质量技术监督局2712海洋监测规范(第2部分):数据处理与分析质量控制GB17378.2[S].1998. 陈上及,马继瑞.海洋数据处理分析方法及其应用[M].北京:海洋出版社,1991. 黄谟涛,翟国君,王瑞,等.海洋异常数据的检测[J].测绘学报,1999,28(3):269-277. OPPENHEIM A V, SCHAFER R W. Discrete-Time Signal Processing[M]. Prentice-Hall, 1989. MITRA S K. Digital Signal Processing, 2nd ed[M]. McGraw-Hill, 2001. 刘敏,何洪林,于贵瑞,等. 中亚热带人工针叶林CO2通量组分统计不确定性分析[J]. 中国科学:D辑 地球科学,2008,38(8):1016-1027. HOLLINGER D Y, RICHARDSON A D. Uncertainty in eddy covariance measurements and its application to physiological models[J]. Tree Physiol,2005,25:873-885. HAMILTON J D. Time Series Analysis[M]. Princeton, NJ: Princeton University Press, 1994. GREENE W H. Econometric Analysis [M]//Upper Saddle River,5th ed. NJ: Prentice Hall, 2003. 于贵瑞,孙晓敏. 陆地生态系统通量观测的原理与方法[M].北京:高等教育出版社,2006:261-264. WANNIKHOF R H. Relationship between gas exchange and wind speed over the ocean[J]. Journal of Geophysical Research,1992,97(C5):7373-7381. WEISS R F, PRICE B A. Nitrous oxide solubility in water and seawater[J]. Marine Chemistry,1980, 8(4):347-359. -
计量
- 文章访问数: 1622
- HTML全文浏览量: 13
- PDF下载量: 1691
- 被引次数: 0