留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下沙丘形态演化的数值模拟实验

杜晓琴 高抒

杜晓琴, 高抒. 水下沙丘形态演化的数值模拟实验[J]. 海洋学报, 2012, 34(4): 121-134.
引用本文: 杜晓琴, 高抒. 水下沙丘形态演化的数值模拟实验[J]. 海洋学报, 2012, 34(4): 121-134.
DU Xiaoqin, GAO Shu. An evolution of subaqueous dune morphology: numerical experiments[J]. Haiyang Xuebao, 2012, 34(4): 121-134.
Citation: DU Xiaoqin, GAO Shu. An evolution of subaqueous dune morphology: numerical experiments[J]. Haiyang Xuebao, 2012, 34(4): 121-134.

水下沙丘形态演化的数值模拟实验

基金项目: 国家自然科学基金面上项目(40576040)。

An evolution of subaqueous dune morphology: numerical experiments

  • 摘要: 水下沙丘在海洋、湖泊、河流等浅水砂质沉积区广泛分布。基于过程的数值实验方法探讨了沙丘形态演化问题,试图解释在沙丘形成过程中各因素的作用及它们之间的关系。模拟中考虑了以下的变量:水深、沉积物粒度、沉积层厚度以及台风作用。模拟结果显示,沙丘的空间分布控制了空间流场的参数k2,沙丘波高受水深、沉积物粒度以及沉积层厚度等因素的影响,沉积层厚度决定了沙丘的形态是否饱满。在台风作用中,沙丘波峰的沉积物被侵蚀,高程降低,波高渐小;台风作用后,沉积物被重新输运至波峰,沙丘高度逐渐恢复。因此,沙丘的高度取决于台风作用的时间以及2次台风作用之间的间隔。沙丘形态和尺度在台风作用前后变化较小,但沙丘演化的速度却有所提高。根据台湾浅滩和北海南部地貌系统数据的验证,模拟具有较好的效果。
  • JOHNSON M A, STRIDE A H, BELDERSON R H, et al. Predicted sand wave formation and decay on a larger offshore tidal-current sand-sheet[J]. Special Publications of the International Association of Sediment, 1981, 5: 247-256.
    LANGHORNE D N. An evaluation of Bagnold’s dimensionless coefficient of proportionality using measurements of sand wave movements[J]. Marine Geology, 1981, 43: 49-64.
    钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社,2003: 687.
    高抒,方国洪,于克俊,等. 沉积物输运对砂质海底稳定性影响的评估方法及应用实例[J].海洋科学集刊,2001,43: 25-37.
    KNAAPEN M A F, HULSCHER S J M H. Regeneration of sand waves after dredging[J]. Coastal Engineering, 2002, 46: 277-289.
    NMETH A A, HULSCHER S J M H, DE VRIEND H J. Modelling sand wave migration in shallow shelf seas[J].Continental Shelf Research, 2002,22: 2795-2806.
    MORELISSEN R, HULSCHER S J M H, KNAAPEN M A F, et al. Mathematical modeling of sand wave migration and the interaction with pipelines[J]. Coastal Engineering, 2003, 48: 197-209.
    FLEMMING B W. On the dimensional adjustment of subaqueous dunes in response to changing flow conditions: a conceptual process model // TRENTESAUX A, GARLAN T.Marine Sandwave Dynamics.France: University of Lille 1,2000:61-67.
    FLEMMING B W. The role of grain size, water depth and flow velocity as scalling of factors controlling the size of subaqueous dunes //TRENTESAUX A,GARLAN T.Marine Sandwave Dynamics.France: University of Lille 1,2000: 55-60.
    Off T. Rhythmic linear sand bodies caused by tidal currents[J]. Bulletin of the American Association of Petroleum Geologists, 1963, 47: 324-341.
    HUTHNANCE J. On one mechanism forming linear sand banks[J]. Estuarine and Coastal Shelf Science, 1982,14: 77-99.
    HUTHNANCE J. On the formation of sand banks of finite extent[J]. Estuarine and Coastal Shelf Science, 1982, 15: 277-299.
    HULSCHER S J M H. Tidal induced larger-scale regular bed form patterns in a three-dimensional shallow water model[J]. Journal of Geophysical Research, 1996, 101(C9): 20727-20744.
    FREDSE J, DEIGAARD R. Mechanics of coastal sediment transport[M]//Advanced Series on Ocean Engineering, Vol. 3.Singapore:World Scientific,1992: 260-289.
    HULSCHER S J M H, DE SWART H E, DE VRIEND H J. The generation of offshore tidal sand banks and sand waves[J]. Continental Shelf Research, 1993, 13(11):1183-1204.
    DE SWART H E, HULSCHER S J M H. Dynamics of larger-scale bed forms in coastal seas[M]// Nonlinear Dynamics and Pattern Formation in the Natural Environment. New York: Longman, White Plains, 1995: 315-331.
    HULSCHER S J M H, DOHMEN-JANSSEN C M. Introduction to special section on marine sand wave and rive dune dynamics[J]. Journal of Geophysical Research, 2005, 110: F04S01.
    ASHLEY G M.Classification of large-scale subaqueous bed forms: a new look at an old problem[J]. J Sediment Petrol, 1990, 60: 160-172.
    MUIR WOOD A M, FLEMMING C A. Coastal Hydraulics[M].2nd ed.London: Macmillan, 1981: 280.
    庄振业,曹立华,刘升发,等.陆架沙丘(波)活动量级和稳定性标志研究[J].中国海洋大学学报,2008,38(6):1001-1007.
    许富祥.台湾海峡及其邻近海域灾害性海浪的时空分布[J].东海海洋,1998,16(3):14-17.
    SOULSBY R L. Dynamics of Marine Sands[M]. London: Thomas Telford Services Limited, 1997: 249.
    HARDISTY J. An assessment and calibration of formulations for Bagnold’s bedload equation[J]. Journal of Sedimentary Petrology, 1983, 53: 1007-1010.
    WANG YP,GAO S. Modification to the Hardisty equation, regarding the relationship between sediment transport rate and particle size[J]. Journal of Sedimentary Research, 2001, 71(1):118-121.
    MILLER M C, MCCAVE I N, KOMAR P D. Threshold of sediment motion under unidirectional currents[J]. Sedimentology, 1997, 24: 507-527.
    VAN RIJN L C. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas[M]. Amsterdam: Aqua Publications, 1993: 673.
    BAGNOLD R A. An Approach to the Sediment Transport Problem from General Physics[M].Washington, D.C.: Geological Survey Professional Paper, 1966: 422-Ⅰ.
    Stam J M T. On the modeling of two-dimensional aeolian dunes[J]. Sedimentology, 1997, 44:127-141.
    杜晓琴,李炎,高抒. 台湾浅滩大型沙波、潮流结构和推移质输运特征[J].海洋学报,2008,30(5):124-136.
    ANTHONY D, LETH J O. Large-scale bed forms, sediment distribution and sand mobility in the eastern North Sea off the Danish west coast[J]. Marine Geology, 2002, 182: 247-263.
    NÉMETH A A. Modelling offshore sand waves .Netherlands: University of Twente,2003.
  • 加载中
计量
  • 文章访问数:  1249
  • HTML全文浏览量:  12
  • PDF下载量:  894
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-08-01
  • 修回日期:  2012-02-10

目录

    /

    返回文章
    返回