留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全球海洋碳循环三维数值模拟研究

鲍颖 乔方利 宋振亚

鲍颖, 乔方利, 宋振亚. 全球海洋碳循环三维数值模拟研究[J]. 海洋学报, 2012, 34(3): 19-26.
引用本文: 鲍颖, 乔方利, 宋振亚. 全球海洋碳循环三维数值模拟研究[J]. 海洋学报, 2012, 34(3): 19-26.
BAO Ying, QIAO Fangli, SONG Zhenya. The 3-dimensional numerical simulation of global ocean carbon cycle[J]. Haiyang Xuebao, 2012, 34(3): 19-26.
Citation: BAO Ying, QIAO Fangli, SONG Zhenya. The 3-dimensional numerical simulation of global ocean carbon cycle[J]. Haiyang Xuebao, 2012, 34(3): 19-26.

全球海洋碳循环三维数值模拟研究

基金项目: 国家自然科学重点基金项目"大气-海浪-海洋环流相互作用机理研究及耦合数值模式改进" (40730842);国家重点基础研究发展计划("973"计划)(2010CB950504)。

The 3-dimensional numerical simulation of global ocean carbon cycle

  • 摘要: 基于海洋环流模式POP和生物地球化学模型OCMIP-2,建立了全球海洋碳循环模式,并用于对全球海洋碳循环的模拟研究。该模式在大气CO2为283×10-6条件下,积分3 100 a,达到工业革命前的平衡态。在此基础上,用历史时期观测的大气CO2浓度进行强迫,模拟了历史时期的海洋碳循环。模拟的无机碳浓度、总碱度与基于观测得到的结果基本一致,模式能够较好地模拟全球碳循环过程。模拟结果表明,在北半球中高纬度和南半球的中纬度,海洋是大气CO2的主要汇区;在赤道南北纬20°之间和南大洋50°S以南,海洋表现为大气CO2的源区。在1980s海洋吸收CO2速率(以C计)为1.38 Pg/a,1990s为1.55 Pg/a。海洋中人为碳在北大西洋含量最大,向下到达海底并向南输运到30°N附近;在南极附近,浓度较小,深度达到3 000 m;在中纬度,人为碳被限制在温跃层以上。
  • HOUGHTON J T, DING Y, GRIGGS D J, et al. Climate change 2001: The Scientific Basis[M].Cambridge, UK: Cambridge University Press, 2001.
    SOLOMON S, QIN D H, MANNING M, et al. Climate change 2007: The Physical Science Basis[M].Cambridge, UK: Cambridge University Press, 2007.
    刘瑞芝,张学洪.海洋碳循环模式的进展[J].大气科学,1992,16(4):494-501.
    徐永福,浦一芬,赵亮.海洋碳循环模式的研究进展[J].地球科学进展,2005,20(10):1106-1115.
    徐永福.二氧化碳生物地球化学循环研究的进展[J].地球科学进展,1995,10(4): 367-372.
    徐永福,赵亮,李阳春.海洋碳循环与海洋生态系统动力学[J].海洋环境科学,2007,26(5):495-500.
    张远辉,王伟强,陈立奇.海洋二氧化碳的研究进展[J].地球科学进展,2000,15(5):559-564.
    李宁,李学刚,宋金明.海洋碳循环研究的关键生物地球化学过程[J].海洋环境科学,2005,24(2):75-80.
    谭娟,沈新勇,李清泉.海洋碳循环与全球气候变化相互反馈的研究进展[J].气象研究与应用,2009,30(1):33-36.
    SMITH R D, DUKOWOCZ J K, MALONE R C. Parallel ocean general circulation modeling[J]. Physica D: Nonlinear Phenomena, 1992, 60: 38-61.
    SMITH R D, KORTAS S, MELTA B. Curvilinear coordinates for global ocean models. Los Alamos Technical Report, 1995, LA-UR-95-1146.
    SMITH R D, GENDT P R. Reference manual for the Parallel Ocean Program(POP), ocean component of the community of the community climate system model(CCSM2.0 and 3.0). Los Alamos Technical Report, 2002 LA-UR-02-2484.
    NAJJAR R G, ORR J C. Design of OCMIP-2 simulations of chlorofluorocarbons, the solubility pump and common biogeochemistry.http://www.ipsl.jussieu.fr/OCMIP/, 1999.
    DONEY S C, LINDSAY K, CALDEIRA K, et al. Evaluating global ocean carbon models: The importance of realistic physics[J].Global Biogeochemical Cycles, 2004, 18, GB3017, doi: 10.1029/2003GB002150.
    徐永福,赵亮,浦一芬,等.二氧化碳海气交换通量估计的不确定性[J].地学前缘,2004,11(2): 565-571.
    DONEY S C, LINDSAY K, FUNG I, et al. Natural variability in a stable, 1000-yr global coupled climate-carbon cycle simulation[J].Joural of Climate, 2006, 19: 3033-3054.
    SMITH R D, MALTRUD M E, BRYAN F O, et al. Numerical simulation of the North Atlantic ocean at 1/10 degree[J]. Journal of Physical Oceanography, 2000, 30:1532-1561.
    MALTRUD M E, MCCLEAN J L. An eddy-resolving global1/10 degree ocean simulation[J]. Ocean Modelling, 2005, 8: 31-54.
    COLLINS W D, BRRZ C M, BLACKMON M L, et al. The community climate system model version 3 (CCSM3) [J].Journal of Climate, 2005, 19: 2122-2143.
    NAJJAR R G, ORR J C. OCMIP-2 Biotic-HOWTO.http://www.ipsl.jussieu.fr/OCMIP/phase2/simulations/ Biotic/HOWTO-Biotic.ps, 1999.
    KEY R M, KOZYR M A, SABINE C L, et al. A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP) [J]. Global Biogeochemical Cycles,2004, 18, GB4031, doi: 10.1029/2004GB002247.
    周天军,张学洪,王绍武.全球水循环的海洋分量研究[J].气象学报,1999,57(3):264-282.
    周天军.利用不同资料估算的全球海气间淡水交换量之比较[J].自然科学进展,2003,13(9),946-950.
    MILLERO F J, LEE K, ROCHE M P. Distribution of alkalinity in the surface waters of the major oceans[J]. Marine Chemistry, 1998, 60: 111-130.
    TAKAHASHI T, SUTHERLAND S C, WANNINKHOF R, et al. Climatological mean and decadal changes in surface ocean pCO2, and net sea-air CO2 flux over the global oceans[J]. Deep-Sea Research Ⅱ,2009, 56: 554-577.
    SARMIENTO J L, ORR J C, SIEGENTHALER U. A perturbation simulation of CO2 uptake in an ocean general circulation model[J].Journal of Geophysical Research, 1992, 97, 3621-3645.
    金心,石广玉.海洋对人为CO2吸收的三维模式研究[J].气象学报,2000,58(1):40-48.
    ORR J C, MAIER-REIMER E, MIKOLAJEWICA U, et al. Estimates of anthropogenic carbon uptake from four three-dimensional global ocean models[J]. Global Biogeochemical Cycles, 2001, 15(1): 43-60.
    MCNEIL B I, MATEAR R J, KEY R M, et al. Anthropogenic CO2 uptake by the oceani based on the global chloroflurocarbon data set[J].Science, 2003, 299:235-239.
    MIKALOFF FLETCHER S E, GRUBER N, JACOBSON A R, et al. Inverse estimates of anrhropogenic CO2 uptake, transports, and storage by the ocean[J]. Global Biogeochemical Cycles, 2006, 20, GB2002, dio:10.1029/2005GB002530.
    SWEENEY C, GLOOR E, JACOBSON A R, et al. Constraining global air-sea gas exchange for CO2 with recent bomb 14C measurements[J]. Global Biogeochemical Cycles, 2007, 21, GB2015, doi: 10.1029/2006GB002784.
    XU Y F, LI Y C. Estimates of anthropogenic CO2 uptake in a global ocean model[J]. Advances in Atmospheric Science, 2009, 26(2): 265-274.
    GRUBER N, GLOOR M, MIKALOFF FLETCHER S E, et al. Oceanic sources, sinks, and transport of atmospheric CO2[J]. Global Biogeochemical Cycles, 2009, 23, GB1005, doi: 10.1029/2008GB003349.
    SABINE C L, FEELY R A, GRUBER N, et al. The oceanic sink for anthropogenic CO2[J]. Science, 2004, 305: 367-371.
  • 加载中
计量
  • 文章访问数:  1810
  • HTML全文浏览量:  40
  • PDF下载量:  2337
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-05-07
  • 修回日期:  2011-01-11

目录

    /

    返回文章
    返回