绿潮藻浒苔光合固碳与防治海水酸化的作用Ⅰ.光合固碳与海水pH值提高速率研究
Studies on photosynthesis carbon fixation and ocean acidification prevention in Ulva prolifera I.Rate of photosynthesis carbon fixation and seawater pH increase
-
摘要: 以黄海绿潮暴发的主要漂浮种类浒苔 (Ulva prolifera)为材料,在实验室条件下研究了浒苔光合参数、固碳速率及提升海水pH的作用,结果表明:浒苔光合作用半饱和常数Km为0.25 mmol/dm3,光合作用饱和时海水溶解无机碳(DIC)浓度也只需1.2 mmol/dm3,为正常海水DIC浓度(2.4 mmol/dm3)一半,故黄海绿潮暴发时藻体可以一直保持光合作用饱和与旺盛生长状态。水生条件下浒苔藻体主要吸收海水中的DIC,0.5 g/dm3培养密度下,1个光周期内净光合固碳速率为10.92 mg /(g·d)(鲜重)。连续培养5 d,0.5,1.0和2.5 g/dm3培养密度组的DIC浓度从22 mg/dm3分别降为4.85,2.62和0.66 mg/dm3,表明DIC去除率随藻体培养密度提高而增强,分别可达77.78%,88.00%,96.98%;藻体吸收海水中无机碳的同时可使海水pH升高,0.5 g/dm3培养密度下,1个光周期内净提升pH速率高达0.96/(dm3·g·d)。连续培养5 d,0.5,1.0和2.5 g/dm3培养密度组第1天其pH分别可达到9.1,9.2和9.7,表明藻体密度越高pH提升越快,而且第5天pH均可稳定在9.9左右。浒苔暴露在空气中可直接吸收空气中CO2,1个光周期内其光合固碳速率约为46.14 mg/(g·d),而在海水中的光合固碳速率为10.92 mg/(g·d),可见浒苔在空气中的光合固碳速率是水中的4.23倍。水生和气生时单位质量藻体的固碳效率因藻体间相互遮蔽而下降。结果可为今后黄海绿潮暴发机制及CO2减排和防止海洋酸化作用的评估提供技术支撑。Abstract: The effects of DIC levels on the photosynthesis of Ulva prolifera, carbon absorbing capacity at aquatic and aerial state, and pH value improving ability, were studied under laboratory conditions. The results show that the value of Km (DIC) for photosynthesis of U. prolifera is 0.25 mmol/dm3, and photosynthesis of U. prolifera is saturated at 1.2mmol/dm3 of DIC concentration in seawater, which is extremely lower than ambient DIC concentration(2.4 mmol/dm3, DIC) in normal seawater. It indicates that the blades in U. prolifera could keep a vigorous photosynthesis and growth during "green tide" blooming. In seawater, the blades of U. prolifera absorbed the DIC from seawater. Cultured with blade density of 0.5 g/dm3, the rate of carbon fixation of U. prolifera by photosynthesis is 10.92 mg/(g·d)(FW) for one photosynthesis period. Cultured for 5 d, the DIC concentration in 0.5, 1.0 and 2.5 g/dm3 blade density groups decreases to 4.85, 2.62 and 0.66 mg/dm3 respectively. It indicates that DIC uptaking rate increases with the blade density increase, and the DIC concentration removal rate is 77.78%, 88.00% and 96.98% for 0.5, 1.0 and 2.5 g/dm3blade density groups, respectively. When blades absorbed the DIC out of seawater, they immediately increased the pH in seawater, and the rate for pH increasing reached to 0.96 /(dm3·g·d) in culture system with 0.5 g/dm3 blade density during one photosynthesis period. Cultured for 5 d, the pH value in 0.5, 1.0 and 2.5 g/dm3blade density groups increases to 9.1, 9.2 and 9.7 in the first culture day respectively, and keeps at 9.9 in the 5th day. It indicates that the higher the blade density, the higher the pH in culture system.When exposed in air, the blades could absorb the CO2 from air. The rate of photosynthetic carbon fixation of U.prolifera in the air is about 46.14 mg/(g·d) during one photosynthesis period, and it is 4.23 times more than that in water. The photosynthesis carbon fixation efficiency for unit mass would decrease for shading among blades. It indicates that this study will provide the supports for green tide blooming mechanism study and estimating its CO2 emission reduction and ocean acidification prevention.
-
Key words:
- Ulva prolifera /
- dissolved inorganic carbon /
- photosynthetic carbon fixation /
- ocean acidification /
- aquatic /
- aerial
-
RIEBESELL U. Effects of CO2 enrichment on marine phytoplankton[J]. J Oceanogr,2003,60(4):719-729. DONEY S C. The dangers of ocean acidification[J]. Sci Am,2006,294(3):58-65. KURIHARA H,KATO S,ISHIMATSU A. Effects of increased seawater pCO2 on early development of the oyster Crassostrea gigas[J].Aquat Biol,2007,1:91-98. SIEGENTHALER U,SARMIENTO J L. Atomospheric carbon dioxide and the ocean[J]. Nature,1993,9(365):119-125. SMITH S V. Marine macrophytes as a global carbon sink[J]. Science,1981,211:828-840. REHDANZ K,RICHARD S J T,WETZEL P,et al. Ocean carbon sinks and international climate policy[J]. Energ Policy,2006,34:3516-3526. 田千桃,霍元子,张寒野,等.浒苔和条浒苔生长及其氨氮吸收动力学特征研究[J].上海海洋大学学报,2010,19(2):252-258. 田千桃,霍元子,王阳阳,等. 浒苔对NH+4-N与NO-3-N吸收的相互作用[J].海洋科学,2010,34(7):41-45. 姜红霞,高坤山. 干出和紫外辐射对坛紫菜光合作用的影响[J].自然科学进展,2009,19(8):835-840. 邹定辉,阮祚禧,陈伟洲. 干出状态下羊栖菜的光合作用特性[J]. 海洋通报,2004,23(5):33-39. ZOU D H,GAO K H. Photosynthetic responses to inorganic carbon in Ulva lactuca under aquatic and aerial states[J].Acta Bot Sin,2002,44(11):1291-1296. 邹定辉,高坤山. 大型海藻类光合无机碳利用研究进展[J]. 海洋通报,2001,20(5):83-90. LARSSON C,AXELSSON L,RYBERG H,et al. Photosynthetic carbon utilization by Enteromorpha intestinalis(Chlorophyta) from a Swedish rockpool[J]. Eur J Phycol,1997,32(1):49-54. MERCADO J M,NIELL F X. Carbon dioxide uptake by Bostrychia scorpiodes (Rhodophyceae) under emersed conditions[J]. Eur J Phycol,2000,35:45-51. ANDRA J R,BRUN F G,PREZ-LLORNS J L,et al. Acclimation responses of Gracilaria sp.(Rhodophyta) and Enteromorpha intestinalis (Chlorophyta) to changes in the external inorganic carbon concentration[J]. Bot Mar,2001,44(4):361-370. ZOU D H,GAO K H. Exogenous carbon acquisition of photosynthesis in Porphyra haitanensis(Bangiales,Rhodophyta) under emersed state[J].Prog Nat Sci,2004,14(2):34-40. AXELSSON L,RYBERG H,BEER S. Two modes of bicarbonate utilization in the marine green macroalga Ulva lactuca[J]. Plant Cell Environ,1995,18(4):439-445. 陈秀国. 浅析海水养殖对水环境的影响及防治措施[J]. 现代农业科学,2008,15(11):111-112. 邹定辉.脱水对浒苔光合作用的影响[J]. 湛江海洋大学学报,2001,21(2):30-34. 郭赣林,董双林.干出对潮间带不同垂直位置海藻的生长及光合作用速率的影响[J]. 海洋湖沼通报,2008,4:78-84. ZOU D H,GAO K H,RUAN Z X. Daily timing of emersion and elevated atmospheric CO2 concerntration affect photosynthetic performance of the intertidal macroalga Ulva lactuca(Chlorophyta) in sunlight[J].Bot Mar,2007,50(5):275-279. BENJAMIN M,JIL L Deikman.Enteromorpha clathrata:a potential seawater-irrigated crop[J].Bioresource Technol,1995,52:225-260. RAVEN J A.Putting the C in phycology[J]. Eur J Phycol,1997,32(4):319-333. CHUNG I K,BEARDALL J,MEHTA S,et al. Using marine macroalgae for carbon sequestration:a critical appraisal[J].J Appl Phycol,2011,23(5):877-886. 李检平,赵卫红,付敏,等. 氮磷营养盐对浒苔生长影响的初步探讨[J]. 海洋科学,2010,34(4):45-48. 忻丁豪,任松,何培民,等. 黄海海域浒苔属(Enteromorpha)生态特征初探[J]. 海洋环境科学,2009,28(2):190-192.
计量
- 文章访问数: 2023
- HTML全文浏览量: 27
- PDF下载量: 58
- 被引次数: 0