留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二氧化碳加富与阳光紫外辐射对球形棕囊藻的耦合效应

陈善文 高坤山

陈善文, 高坤山. 二氧化碳加富与阳光紫外辐射对球形棕囊藻的耦合效应[J]. 海洋学报, 2011, 33(4): 155-162.
引用本文: 陈善文, 高坤山. 二氧化碳加富与阳光紫外辐射对球形棕囊藻的耦合效应[J]. 海洋学报, 2011, 33(4): 155-162.
CHEN Shan-wen, GAO Kun-shan. The coupled effects of carbon dioxide enrichment and ultroviolet radiation on Phaeocystis globosa Scherffel[J]. Haiyang Xuebao, 2011, 33(4): 155-162.
Citation: CHEN Shan-wen, GAO Kun-shan. The coupled effects of carbon dioxide enrichment and ultroviolet radiation on Phaeocystis globosa Scherffel[J]. Haiyang Xuebao, 2011, 33(4): 155-162.

二氧化碳加富与阳光紫外辐射对球形棕囊藻的耦合效应

基金项目: 国家自然科学基金项目(40930846);"长江学者和创新团队发展计划"(IRT0941)。

The coupled effects of carbon dioxide enrichment and ultroviolet radiation on Phaeocystis globosa Scherffel

  • 摘要: 在含有和滤除紫外(UV)辐射(UVR,280~400 nm)的阳光条件下,向静止、恒温的培养体系中分别充含390×10-6和800×10-6体积CO2的空气,以期探讨CO2浓度升高与阳光UV辐射对球形棕囊藻(Phaeocystis globosa Scherffel)的生理生态学影响。结果显示,该藻对CO2加富和UVR的响应与细胞密度密切相关。在细胞密度较低时,CO2加富导致生长和有效光化学效率分别下降了11.0%和10.7%,UVR对两者的抑制率分别达19.2%和41.7%。在细胞密度较高时,CO2加富和UVR的影响明显减小,UVR的存在甚至导致生长速率的增加。UVR降低了该藻的最大电子传递速率及光能利用效率,在周围空气下分别达14.1%和21.0%,CO2加富使其进一步下降,分别达8.2%和17.6%。细胞Chl a和Chl c及类胡萝卜素含量在高CO2条件下显著增加(达4.6%,5.9%和5.2%);UVR导致类胡萝素含量升高(达4.3%)。结果表明,在阳光辐射下,CO2加富导致球形棕囊藻抵御强光及UVR胁迫能力下降,其对此的生化响应是增加具有保护作用的类胡萝卜素的含量。
  • CALDEIRA K, WICKETT M E. Anthropogenic carbon and ocean pH[J]. Nature, 2003, 425: 365.
    KERR R A. Ozone loss, greenhouse gases linked[J]. Science, 1998, 280(5361):202.
    DAMERIS M. Depletion of the ozone layer in the 21st century[J]. Angewandte Chemie International Edition, 2010, 49: 489-491.
    RSVISHANKARA A R, DANIEL J S, PORTMANN R W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century[J]. Science, 2009, 326: 123-125.
    HEIN M, SAND-JENSEN K. CO2 increases oceanic primary production[J]. Nature, 1997, 388: 526-527.
    邹定辉, 陈雄文.高浓度CO2对条浒苔(Enteromorpha clathrata)生长和一些生理生化特征的影响[J]. 海洋通报. 2002,21: 38-45.
    GAO K S, GUAN W Q, HELBLING E W. Effects of solar ultraviolet radiation on photosynthesis of the marine red tide alga Heterosigma akashiwo (Raphidophyceae)[J]. Journal of Photochemistry and Photobiology: B, 2007, 86: 936-951.
    GAO K S, LI G, HELBLING E W, et al. Variability of UVR effects on photosynthesis of summer phytoplankton assemblages from a tropical coastal area of the South China Sea [J]. Journal of Photochemistry and Photobiology: B, 2007, 83: 802-809.
    GAO K S, WU Y P, LI G, et al. Solar UV radiation drives CO2 fixation in marine phytoplankton: a double-edged sword[J]. Plant Physiology, 2007, 144: 54-59.
    BEARDALL J, RAVEN J A. The potential effects of global climate change on microalgal photosynthesis, growth and ecology [J]. Phycologia, 2004, 43: 26-40.
    WU H Y, GAO K S, VILLAFANE V E, et al. Effects of Solar UV radiation on morphology and photosynthesis of filamentous cyanobacterium Arthrospira platensis[J]. Applied Environmental Microbiology, 2005, 71:5004-5013.
    关万春,高坤山.阳光紫外辐射对两种微藻类光化学效率的影响[J]. 水生生物学报,2007,31:153-158.
    HELBLING E W, GAO K S, RODRIGO J G, et al. Utilization of solar UV radiation by coastal phytoplankton assemblages off SE China when exposed to fast mixing[J]. Marine Ecology Progress Series, 2003, 259: 59-66.
    GAO K S, ARUGA Y, ASADA K, et al. Enhanced growth of red alga Porphyra yezoensis Ueda in high CO2 concentrations[J]. Journal of applied Phycology,1991, 3: 355-362.
    GAO K S, ARUGA Y, ASADA K, et al. Influence of enhanced CO2 on growth and photosynthesis of the red algae Gracilaria sp. and G. chiliensis[J]. Journal of Applied Phycology,1993, 5: 563-571.
    胡晗华, 高坤山. CO2浓度倍增对牟氏角毛藻生长和光合作用的影响[J]. 水生生物学报,2001,25: 636-639.
    WU H Y, ZOU D H, GAO K S.Impacts of increased atmospheric CO2 concentration on photosynthesis and growth of micro- and macro-algae[J]. Science in China: Series C. Life Sciences, 2008, 51: 1144-1150[J]. Plant, Cell and Environment, 2004, 27: 1447-1458
    ZHENG Y Q, GAO K S. Impacts of solar UV radiation on the photosynthesis, growth, and UV-absorbing compounds in Gracilaria lemaneiformis (Rhodophyta) grown at different nitrate concentration [J]. Journal of Phycology, 2009, 45:314-323.
    SCHOEMANN V, BECQUEVORT S, STEFELS J, et al. Phaeocystis blooms in the global ocean and their controlling mechanisms: a review[J]. Journal of Sea Research,2005, 53: 43-66.
    CADEE G C. Accumulation and sedimentation of Phaeocystis globosa in the Dutch Wadden Sea[J]. Journal of Sea Reseach, 1996, 36: 321-327.
    RILEGMAN R, BOEKEL W V. The ecophysiology of Phaeocystis globosa: a review[J]. Journal of Sea Research, 1996. 35 (4): 235-242.
    CHEN Y Q, WANG N, ZHANG P, et al. Molecular evidence identifies bloom-forming Phaeocystis (Prymnesiophyta) from coastal waters of southeast China as Phaeocystis globosa[J]. Biochemical Systematics and Ecology, 2002, 30: 15-22.
    CHEN S W, GAO K S. Solar ultroviolet radiation and CO2-induced ocean acidification interacts to influence the photosynthetic performance of the red tide alga Phaeocystis globosa (Chrysophyte)[J]. Hydrobiologia, 2011,DOI: 10.1007/S10750-011-0807-0.
    JEFFREY S M, HAXO F T. Photosynthetic pigments of dinoflagellates (Zooxanthellae) from corals and clams[J]. Biology Bulletin, 1968, 135: 149-165.
    ANDERSON D H, ROBINSON R J. Rapid electrometric determination of the alkalinity of sea water using a glass electrode[J]. Industrial and Engineering Chemistry, 1946, 18: 767-769.
    LEWIS E, WALLACE D W R. Program developed for CO2 system calculations . ORNL/CDIAC- 105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy. 1998.Available from http://cdiac.ornl.gov/oceans/CO2 rprt.html. Accessed 12 June 2007.
    GUAN W Q, GAO K S. Light histories influence the impacts of solar ultraviolet radiation on photosynthesis and growth in a marine diatom Skeletonema costatum[J]. Journal of Photochemistry and Photobiology: B. Biology. 2008, 91: 151-156.
    SATOH A, KURANO N, SENGER H, et al. Regulation of energy balance in photosystems in response to changes in CO2 concentration and light intensities during growth in extremely-high-CO2-tolerant green microalgae[J]. Plant Cell Physiology, 2002, 43: 440-451.
    SOBRINO C, NEALE P J, LUBIAN L M. Interaction of UV radiation and inorganic carbon supply in the inhibition of photosynthesis: spectral and temporal response of two marine picoplankton[J]. Journal of Photochemistry and Photobiology: B, 2005, 81: 384-393.
    WU Y P, GAO K, RIEBESELL U. CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum[J]. Biogeosciences, 2010, 7: 2915-2923.
    QIU B S, LIU J Y. Utilization of inorganic carbon in the edible cyanobacterium Ge-Xian-Mi (Nostoc) and its role in alleviating photo-inhibition[J]. Plant, Cell and Environment, 2004, 27: 1447-1458.
    SOBRINO C, WARD M L, NEALE P J. Acclimation to elevated carbon dioxide and ultraviolet radiation in the diatom Thalassiosira pseudonana: effects on growth, photosynthesis, and spectral sensitivity of photoinhibition[J]. Limnology and Oceanography, 2008, 53: 494-505.
  • 加载中
计量
  • 文章访问数:  1293
  • HTML全文浏览量:  14
  • PDF下载量:  987
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-18

目录

    /

    返回文章
    返回