留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

九龙江河口沉积物中硫酸盐还原与甲烷厌氧氧化:同位素地球化学证据

尹希杰 陈坚 郭莹莹 孙治雷 邵长伟

尹希杰, 陈坚, 郭莹莹, 孙治雷, 邵长伟. 九龙江河口沉积物中硫酸盐还原与甲烷厌氧氧化:同位素地球化学证据[J]. 海洋学报, 2011, 33(4): 121-128.
引用本文: 尹希杰, 陈坚, 郭莹莹, 孙治雷, 邵长伟. 九龙江河口沉积物中硫酸盐还原与甲烷厌氧氧化:同位素地球化学证据[J]. 海洋学报, 2011, 33(4): 121-128.
YIN Xi-jie, CHEN Jian, GUO Ying-ying, SUN Zhi-lei, SHAO Chang-wei. Sulfate reduction and methane anaerobic oxidation: isotope geochemical evidence from the pore water of coastal sediments in the Jiulong Estuary[J]. Haiyang Xuebao, 2011, 33(4): 121-128.
Citation: YIN Xi-jie, CHEN Jian, GUO Ying-ying, SUN Zhi-lei, SHAO Chang-wei. Sulfate reduction and methane anaerobic oxidation: isotope geochemical evidence from the pore water of coastal sediments in the Jiulong Estuary[J]. Haiyang Xuebao, 2011, 33(4): 121-128.

九龙江河口沉积物中硫酸盐还原与甲烷厌氧氧化:同位素地球化学证据

基金项目: 国家海洋局第三海洋研究所基本科研业务费专项资金资助项目(海三科2009013);国家海洋局第三海洋研究所基本科研业务费专项资金资助项目(2009056);流域-河口区生态安全评价与调控技术研究(200805064)。

Sulfate reduction and methane anaerobic oxidation: isotope geochemical evidence from the pore water of coastal sediments in the Jiulong Estuary

  • 摘要: 通过沉积物柱孔隙水中甲烷,SO42-,Clc(34S-SO42-)、δc(13C-CH4)的垂直分布特征,研究了硫酸盐还原和甲烷厌氧氧化(anaerobic oxidation of methane,简称AOM)过程在九龙江河口沉积物中的分布规律。测定结果显示两个站位(J-A和J-E)间隙水中SO42-浓度随深度增加快速减小,分别在55和130 cm深度附近消耗殆尽,而惰性的Cl浓度随深度没有减小的趋势;孔隙水中硫酸盐的硫同位素组成随着深度增加明显偏重。这些结果表明两个站位沉积物上部(55和130 cm)存在明显的硫酸盐还原作用。孔隙水中甲烷浓度在硫酸盐-甲烷过渡带(sulfate-methane transition,简称SMT)随着深度减小急剧增大,与此同时甲烷碳同位素组成也相应偏重,表明两个站位沉积物下部产生的大量甲烷在SMT附近被AOM消耗。沉积物中SMT分布深度与上覆水盐度存在明显的正相关,反映了研究区上覆水盐度变化所导致的硫酸盐浓度改变是控制九龙江河口沉积物中SMT深度的关键因素。
  • FROELICH P N, KLINKHAMMER G P, BENDER M L, et al. Early oxidation of organic matter in pelagic sediments of eastern equatorial Atlantic: suboxic diagenesis[J]. Geochimica et Cosmochimica Acta, 1979, 43:1075-1090.
    PALLUD C, CAPPELLEN P V. Kinetics of microbial sulfate reduction in estuarine sediments[J]. Geochimica et Cosmochimica Acta, 2006, 70:1148-1162.
    POHLMAN J W, RUPPEL C, HUTCHINSON D R, et al. Assessing sulfate reduction and methane cycling in a high salinity pore water system in the northern Gulf of Mexico[J]. Marine and Petroleum Geology, 2008, 25:942-951.
    JΦRGENSEN B B. Mineralization of organic matter in the sea bed-The role of sulfate reduction[J]. Nature, 1982, 296:643-645.
    WIJSMAN J W M, MIDDELBURG J J, HERMAN P M J, et al. Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea[J]. Marine Chemistry, 2001, 74(4):261-278.
    HOLMER M, STORKHOLM P. Sulphate reduction and sulphur cycling in lake sediments: a review[J]. Freshwater Biology, 2001, 46: 431-451.
    REEBURGH W S. Oceanic methane biogeochemistry[J]. Chemistry Review, 2007,107: 486-513.
    KRUGER M, TREUDE T, WOLTERS H, et al. Microbial methane turnover in different marine habitats[J]. Palaeogeography Palaeoclimatology Palaeoecology,2005,227:6-17.
    PARKES R J, CRAGG B A, BANNING N, et al. Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark)[J]. Environmental Microbiology, 2007,9:1146-1161.
    CANFIELD D E, THAMDRUP B, HANSEN J W. The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction[J]. Geochimica et Cosmochimica Acta, 1993,57:3867-3883.
    BRVCHERT V, CURRIE B, PEARD K R. Hydrogen sulphide and methane emissions on the central Namibian shelf[J]. Progress in Oceanography, 2009,83:169-179.
    YVCEL M, KONOVALOV S K, MOORE T S, et al. Sulfur speciation in the upper Black Sea sediments[J].Chemical Geology, 2010,269:364-375.
    KU T C W, KAY J, BROWNE E, et al. Pyritization of iron in tropical coastal sediments: implications for the development of iron, sulfur, and carbon diagenetic properties,Saint Lucia, Lesser Antilles[J]. Marine Geology, 2008, 249:184-205.
    吴自军, 周怀阳, 彭晓彤, 等. 甲烷厌氧氧化作用:来自珠江口淇澳岛海岸带沉积物间隙水的地球化学证据[J].科学通报, 2006,51 (17): 2052-2059.
    吴自军, 周怀阳, 彭晓彤. 珠江口桂山岛沉积物甲烷厌氧氧化作用研究[J]. 自然科学进展, 2007,17: 905-912.
    吴自军, 周怀阳, 彭晓彤. 珠江口及其邻近海域沉积物甲烷-硫酸根界面分布深度及影响因素[J]. 海洋与湖沼,2009,40(3):249-260.
    BERNER R A. Early Diagenesis: a Theoretical Approach[M]. Princeton, New Jersey:Princeton University Press, 1980.
    FERDELMAN T G,FOSSING H, NEUMANN K, et al. Sulfate reduction in surface sediments of the southeast Atlantic continental margin between 15°38'S and 27°57'S (Angola and Namibia)[J]. Limnology and Oceanography, 1999,44:650-661.
    BERNER R A, WESTRICH J T. Bioturbation and the early diagenesis of carbon and sulfur[J]. American Journal of Science, 1985, 285:193-206.
    MARVIN-DIPASQUALE M C, BOYNTON W R, CAPONE D G. Benthic sulfate reduction along the Chesapeake Bay central channel: II. Temporal controls[J].Marine Ecology Progress Series. 2003,260: 55-70.
    MARVIN-DIPASQUALE M C, CAPONE D G. Benthic sulfate reduction along the Chesapeake Bay central channel: I. Spatial trends and controls[J].Marine Ecology Progress Series,1998,168:213-228.
    THODE-ANDERSEN S, JΦRGENSEN B B. Sulfate reduction and the formation of 35S-labeled FeS, FeS2, and S° in coastal marine sediments[J]. Limnology and Oceanography, 1989, 34: 793-806.
    IVERSEN N, JΦRGENSEN B B. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark)[J]. Limnology and Oceanography, 1985, 30:944-955.
    DEVOL A H, ANDERSON J J. A model for coupled sulfate reduction and methane oxidation in the sediments of Saanich Inlet[J]. Geochimica et Cosmochimica Acta, 1984, 48:993-1004.
    BOROWSKI W S, PAULL C K, USSLER Ⅲ W. Marine pore-water sulfate profiles indicate in-situ methane flux from underlying gas hydrate[J]. Geology, 1996,24:655-658.
    NIEW HNER C, HENSEN C, KASTEN S, et al. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia[J]. Geochimica et Cosmochimica Acta, 1998, 62:455-464.
    HABICHT K H, CANFIELD D E. Sulfur isotope fractionation during bacterial sulfate reduction in organic rich sediments[J]. Geochimica et Cosmochimica Acta,1997,61(24): 5351-5361.
    HABICHT K H, CANFIELD D E, RETHEMEIER J. Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite[J].Geochimica et Cosmochimica Acta, 1998,62(15): 2585-2595.
    WORTMANN U G, BERNASCONI S M, BTTCHER M E. Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step microbial sulfate reduction[J]. Geology, 2001, 29(7): 647-650.
    WHITICAR M J, FABER E, SCHOELL M. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation-isotope evidence[J]. Geochimica et Cosmochimica Acta, 1986,50:693-709.
    SANSONE F J, MARTENS C S. Volatile fatty acid cycling in organic-rich marine sediments[J].Geochimica et Cosmochimica Acta, 1982,46:1575-1589.
    KIENE R P, OREMLAND R S, CATENA A, et al. Metabolism of reduced methylated sulfur compounds by anaerobic sediments and a pure culture of estuarine methanogen[J]. Appl Environ Microbiol, 1986,52:1037-1045.
    WINFREY M R, WARD D M. Substrates for sulfate reduction and methane production in intertidal sediments[J]. Appl Environ Microbiol, 1983, 45:193-199.
    HANSON R S, HANSON T E. Methanotrophic bacteria[J]. Microbiological Reviews,1996, 60(2): 439-471.
    THOMAS J L,ARIAN P,HUUB J M. Sulfate reduction and methanogenesis in sediments of Mtoni mangrove forest, Tazania[J].Ambio-A Journal of the Human Environment, 2002,7-8:614-616.
    SACKETT W M..Carbon and hydrogen isotope effects during the thermocatalytic production of hydrocarbons in laboratory simulation experiments[J].Geochimica et Cosmochimica Acta, 1978,42:571-580.
    BLAIR N E, CARTER W D. The carbon isotope biogeochemistry of acetate from a methanogenic marine sediments[M]. Geochimica et Cosmochimica Acta, 1992, 56:1247-1258.
    ALPERIN M J, REEBURGH W S, WHITICAR M J. Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation[J]. Global Biochemical Cycle,1988, 2(1):279-288.
    JΦRGENSEN B B, WEBER A, ZOPFI J. Sulfate reduction and anaerobic oxidation in Black Sea sediments[J]. Deep-Sea Research:Ⅰ, 2001, 48:2097-2120.
    TREUDE T, NIGGEMANN J, KALLMEYER J, et al. Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin[J]. Geochimica et Cosmochimica Acta, 2005, 69 (11): 2767-2779.
    栾锡武.天然气水合物的上界面--硫酸盐还原-甲烷厌氧氧化界面[J].海洋地质与第四纪地质, 2009, 29(2):91-102.
    ZHANG You-xu. Methane escape from gas hydrate systems in marine environment and methane driven oceanic eruptions[J]. Geophysical Research Letters, 2003, 30 (7):1-4.
    SAUTER E J, MUYAKSHIN S I , CHARLOU J L, et al. Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles [J]. Earth and Planetary Science Letters, 2006, 2433:54-365.
  • 加载中
计量
  • 文章访问数:  1829
  • HTML全文浏览量:  9
  • PDF下载量:  1967
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-07-19

目录

    /

    返回文章
    返回