大西洋热盐环流年代际变化机制研究Ⅲ.北大西洋海气要素对热盐环流年代际振荡的影响
Study on mechanism of interdecadal Atlantic thermohaline circulation variability Ⅲ.Influences of inter-decadal variations by ocean-atmosphere elements
-
摘要: 基于该系列文章前文研究中构建的海气耦合气候模式和所揭示的北大西洋热盐环流年代际振荡机制,针对海气要素对该振荡机制的影响问题进行了重点的探讨。为细致准确的研究北大西洋海洋要素同北大西洋热盐环流年代际振荡的关系,有针对性的定义了副极地海区表层密度指数和北大西洋暖流强度指数并对模式结果进行了全面分析。分析结果表明副极地海区表层密度变化领先大西洋径向翻转环流(MOC)变化7 a,北大西洋暖流的变化领先 MOC变化4 a,格陵兰-苏格兰海脊溢流水强度(包括丹麦海峡溢流水和法鲁海峡溢流水,是北大西洋深层水的重要来源)的变化领先 MOC的变化3 a;北大西洋大气要素变化对北大西洋热盐环流年代际振荡有非常重要的调制作用,当副极地流环和北大西洋暖流(NAC)达到最强的2 a之前,高纬度地区大气为气旋式环流异常,中纬度地区大气为反气旋式环流异常,海表热通量在大西洋副极地海区是负异常,这都有利于副极地流环和NAC的加强,更多高盐度的北大西洋水进入格陵兰-冰岛-挪威海(GIN)海域,由此可以导致GIN海域表层密度上升,使水体的层结稳定性减弱,有利于深层对流的发生,同时大气变化通过风应力旋度和海表热通量也直接影响GIN海域深层水的生成,进而导致格陵兰-苏格兰海脊溢流水的强度增加。Abstract: Using the advanced climate ocean-atmosphere coupled model described in the first paper of this series of studies, response analyses of inter-decadal variations of the Atlantic thermohaline circulation by ocean-atmosphere elements were deliberated. For studying the relationship between the ocean elements of the North Atlantic and inter-decadal variations of Atlantic thermohaline circulation, subpolar sea-surface-density index (SSI) and North-Atlantic-Current Strength Index (NSI) were defined and analyzed. The results of analyses indicate that SSI changes 7 years earlier than Atlantic meridional overturning circulation (MOC) while NSI changing 4 years earlier than MOC. The strength of water overflows from Greenland-Scotland sea ridge (including Denmark Strait and Faro Strait),which is an important water resource of North Atlantic deep water, changes 3 years ahead MOC.The inter-decadal variations of Atlantic thermohaline circulation THC are influenced by North Atlantic atmosphere elements significantly.2 years before subpolar current and North Atlantic Current (NAC) reaching their full strength, High-latitude atmosphere is abnormal in the pattern of cyclonic circulation and middle-latitude atmosphere is abnormal in the pattern of anticyclonic circulation. Meanwhile, the sea surface heat flux in Atlantic subpolar sea area is negative anomaly. All of those abnormal conditions enhance the strength of subpolar current and NAC.More water with higher salinity intruding into Greenland-Icelandic-Norwegian Sea (GIN) brings higher sea surface density of GIN. This weakens the stability of water stratification and increases the probability of occurrence of deep convection.Meanwhile, the variation of atmosphere influences the deep water generating process in GIN by the curl of wind stress and sea surface heat flux. Then the strength of water overflows from Greenland-Scotland sea ridge is strengthened.
-
江志红,屠其璞. 国外有关海气系统年代际变率的机制研究[J]. 地球科学进展, 2001, 16(4): 569-573. DONG B, SUTTON R T.Mechanism of interdecadal thermohaline circulation variability in a coupled ocean-atmosphere GC M[J]. Journal of Climate, 2005, 18: 1117-1135. GANACHAUD A, WUNSCH C. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data[J]. Nature, 2000, 408(6811): 453-457. WEAVER A J, BITZ C M, FANNING A F, et al. Thermohaline circulation: High-latitude phenomena and the difference between the Pacific and Atlantic[J]. Annual Review of Earth and Planetary Sciences, 1999, 27(1): 231-285. BROECKER W S. The great ocean conveyor[J]. Oceanography, 1991, 4(2): 79-89. 周天军,HELGE Drange. 卑尔根气候模式中大西洋热盐环流年代际与年际变率的气候影响[J]. 大气科学, 2005, 29(2): 167-177. 李双林,王彦明,郜永祺. 北大西洋年代际振荡 (AMO) 气候影响的研究评述[J]. Transactions, 2009, 32(3): 458-465. Te REA L A, DIJKSTRA H A. Instability of the ther mohaline ocean circulation on interdecadal timescales[J]. Journal of Physical Oceanography, 2002, 32(1): 138-160. DELWORTH T L,MANN M E. Observed and simulated multidecadal variability in the Northern Hemisphere[J]. Climate Dynamics, 2000, 16(9): 661-676. 周天军,张学洪,刘海龙. 大洋环流模式的温盐表面边界条件处理及其影响研究评述[J]. 地球科学进展, 2009, 24(2): 111-122. PEDLOSKY Joseph. 大洋环流理论[M]. 吴德星,陈学恩,译. 北京:海洋出版社, 2002. 冯士筰. 论大洋环流的尺度分析及风旋度-热盐梯度方程式[J]. 山东海洋学院学报, 1984, 14(1): 33-43. CHENG W, BLECK R, ROOTH C.Multi-decadal thermohaline variability in an ocean-atmosphere general circulation model[J]. Climate Dynamics, 2004, 22(6): 573-590. MCCARTNEY M S, TALLEY L D. Warm-to-cold water conversion in the northern North Atlantic Ocean[J]. J Phys Oceanogr, 1984, 14: 922-935. 牟林. 不同 CO2 浓度情景下热盐环流的演变 .青岛:中国海洋大学,2007. 牟林,陈学恩,宋军,等. 大西洋热盐环流年代际变化机制研究:Ⅱ.年际和年代际变化机制研究[J]. 海洋学报,2011,33(1):12-21. DELWORTH T,MANABE S, STOUFFER R J. Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model[J]. Journal of Climate, 1993, 6: 1993-2011. 周天军,张学洪. 大洋温盐环流的稳定性及变率模拟研究进展[J]. 地球科学进展, 1998, 13(4): 334-343. 牟林,陈学恩,宋军,等. 大西洋热盐环流年代际变化机制研究:Ⅰ.气候模式的建立和验证[J]. 海洋学报,2010,32(6):11-24. 龚道溢,周天军,王绍武. 北大西洋涛动变率研究进展[J]. 地球科学进展, 2001, 16(3): 413-420. 陈上及,马继瑞. 海洋数据处理分析方法及其应用[M]. 北京: 海洋出版社, 1991. SWIFT J H, AAGAARD K,MALMBERG S A. The contribution of the Denmark Strait overflow to the deep North Atlantic[J]. Deep-Sea Research Part A: Oceanographic Research Papers, 1980, 27(1): 29-42.
计量
- 文章访问数: 2211
- HTML全文浏览量: 9
- PDF下载量: 2365
- 被引次数: 0