留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于叶绿素荧光技术的紫菜光适应特征研究

张涛 沈宗根 姚春燕 陆勤勤 姜红霞 朱建一 许璞

张涛, 沈宗根, 姚春燕, 陆勤勤, 姜红霞, 朱建一, 许璞. 基于叶绿素荧光技术的紫菜光适应特征研究[J]. 海洋学报, 2011, 33(3): 140-147.
引用本文: 张涛, 沈宗根, 姚春燕, 陆勤勤, 姜红霞, 朱建一, 许璞. 基于叶绿素荧光技术的紫菜光适应特征研究[J]. 海洋学报, 2011, 33(3): 140-147.
ZHANG Tao, SHEN Zong-gen, YAO Chun-yan, LU Qin-qin, JIANG Hong-xia, ZHU Jian-yi, XU Pu. Light adaptation characteristics of porphyra studied by chlorophyll fluorescence technology[J]. Haiyang Xuebao, 2011, 33(3): 140-147.
Citation: ZHANG Tao, SHEN Zong-gen, YAO Chun-yan, LU Qin-qin, JIANG Hong-xia, ZHU Jian-yi, XU Pu. Light adaptation characteristics of porphyra studied by chlorophyll fluorescence technology[J]. Haiyang Xuebao, 2011, 33(3): 140-147.

基于叶绿素荧光技术的紫菜光适应特征研究

基金项目: 农业部公益性行业专项(200903030-D);"十一五"国家支撑项目(2006BAD09A08-05);江苏省高技术研究项目(BG2006333);国家自然科学基金(31070165)。

Light adaptation characteristics of porphyra studied by chlorophyll fluorescence technology

  • 摘要: 通过水样调制式叶绿素荧光仪,对坛紫菜、条斑紫菜叶状体和丝状体在不同光照条件下叶绿素荧光特性进行研究。结果表明:紫菜叶状体和丝状体实际量子效率在光照处理后逐步下降,且随着处理光强的上升,实际量子效率的下降速率更为明显。快速光曲线初始斜率(α)结果与实际量子效率相似,表明光照时间的延长以及光照强度的升高均引起样品实际光能利用效率的下降。快速光曲线结果也显示样品半饱和光强低于150 μmol/(m2·s),说明紫菜这类海藻偏向较低光强的适应性。随着处理光强的上升,样品Ik值逐步升高,说明紫菜具备适应光强变化的光能调节机制。方差分析结果表明,两种紫菜丝状体实际量子效率、快速光曲线初始斜率(α)和最大相对电子传递速率均因光强的上升而显著降低(P<0.05),叶状体实际量子效率、快速光曲线初始斜率也随光强上升而下降,但最大相对电子传递速率基本维持不变,表明紫菜两个生长世代的藻体对光强具有不同的响应机制。诱导曲线测定结果表明,经强光适应的紫菜叶状体光化学猝灭较高,而非光化学猝灭较低,显示强光处理能够提高叶状体对光强的适应能力。
  • TSENG C K , FEI X G. Macroalgal commercialization in the Orient[J]. Hydrobiologia, 1987, 151/152: 167-172.
    KUROGI M. Study of the life-history of Porphyra: Ⅰ. The germination and development of carpospores [J]. Bulletin of Tohoku Regional Fisheries Research Laboratory, 1953, 2: 67-103.
    曾呈奎, 张德瑞. 紫菜的研究: Ⅲ. 紫菜的有性生殖[J]. 植物学报,1955, 4(2): 153-166.
    张学成, 秦松, 马家海, 等. 海藻遗传学[M].北京: 中国农业出版社, 2005:184-317.
    DAVISON I R, PEARSON G A. Stress tolerance in intertidal seaweeds[J].J Phycol, 1996, 32: 197-211.
    KAUTSKY H, HIRSCH A. Neue Versuche zur Kohlens ureassimilation[J]. Naturwissenschaften, 1931, 19:964-964.
    SCHREIBER U, BILGER W, NEUBAUER C. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis[M]//SCHULZE E-D, CALDWELL M M.Ecophysiology of Photosynthesis.Berlin:Springer-Verlag, 1995: 49-70.
    BOLHàR-NORDENKAMPF H R, LONG S P, BAKER N R, et al. Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation[J]. Functional Ecol, 1989, 3: 497-514.
    HENLEY W J, LEVAVASSEUR G, FRANKLIN L A et al. Photoacclimation and photoinhibition in Ulva rotundata as influenced by nitrogen availability[J]. Planta, 1991, 184: 235-243.
    HANELT D. Photoinhibition of photosynthesis in marine macrophytes of the South Chinese Sea[J]. Mar Ecol Progr Ser, 1992, 82: 199-206.
    GMEZ I, FIGUEROA F L. Effects of solar UV stress on chlorophyll fluorescence kinetics of intertidal macroalgae from southern Spain: a case study in Gelidium species [J]. J Appl Phycol, 1998, 10: 285-294.
    SER DIO J, MARQUES da SILVA J, CATARINO F. Nondestructive tracing of migratory rhythms of intertidal benthic microalgae using in vivo chlorophyll a fluorescence [J]. J Phycol, 1997, 33: 542-553.
    HDER D P, NIGER G R A, HALLIER C et al. Photoinhibition by visible and ultraviolet radiation in the red macroalga Porphyra umbilicalis grown in the laboratory [J]. Plant Ecol, 1999, 145: 351-358.
    NULTSCH W, PFAU J, HUPPERTZ. Photoinhibition of photosynthetic oxygen production and its recovery in the subtidal red alga Polyneura hilliae[J]. Bot Acta, 1990, 103: 62-67.
    GEVAERT F, CREACH A, DAVOULT D, et al. Photo-inhibition and seasonal photosynthetic performance of the seaweed Laminaria saccharina during a simulated tidal cycle: chlorophyll fluorescence measurements and pigment analysis [J].Plant Cell Environ, 2002, 25:859-872.
    FELIX F, SOLUNA S, JOSE A, et al. Effects of solar radiation on photoinhibition and pigmentation in the red alga Porphyra leucosticte [J]. Mar Ecol, 1997, 151: 81-90.
    PROVASOLI L. Media and prospects for the cultivation of marine algae[M]//WATANABE A, HATTORI A.Cultures and Collections of Algae. Proc. U. S. Japan Conf. Hakone, Sept. Jap. Soc. Plant Physiol. 1966: 63-75.
    BILGER W, BJRKMAN O. Role of the xanthopyhyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis[J].Photosynth Res, 1990, 25:173-185.
    GENTY B, BRIANTAIS J M, BAKER N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochim Biophys Acta, 1989, 900:87-92.
    PLATT T, GALLEGOS C L, HARRISON W G. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton[J].J Mar Res, 1980, 38: 687-701.
    CHRISTA C, WHITE A J. Rapid light curves: a new fluorescence method to assess the state of the photosynthetic apparatus [J]. Photosynth Res, 1999, 59:63-72.
    TALARICO L, MARANZANA G. Light and adaptive response in red macroalgae: an overview [J]. Photochem Photobiol, 2000, 56:1-11.
    SCHREIBER U. Pulse-amplitude (PAM) fluorometry and saturation pulse method[M]//PAPAGEORGIOU G, GOVINDJEE.Chlorophyll fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration Series.Dordrecht: Kluwer Academic Publishers, The Netherlands.2004.
    WHITE A J, CRITCLEY C. Rapid light curves: a new fluorescence method to assess the state of the photosynthetic apparatus [J]. Photosynth Res, 1999, 59: 63-72.
    HENLEY W J. Measurement and interpretation of photosynthesis light-response curves in algae in the context of photoinhibition and diel changes [J]. J Phycol, 1993, 29, 729-739.
    SAROUSSI S, BEER S. Alpha and quantum yield of aquatic plants derived from PAM fluorometry: Uses and misuses [J]. Aquatic Botany, 2006, 86:89-92.
    GENTY B, BRIANTAIS J, BAKER N. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence [J]. Biochim Biophys Acta, 1989, 990: 87-92.
    张守仁. 叶绿素荧光动力学参数的意义及讨论[J]. 植物学通报,1999, 16: 444-448.
    FRENKLIN L A, SEATON G G R, LOVELOCK C E, et al. Photoinhibition of photosynthesis on a coral reef[J].Plant Cell Envir, 1996, 19:825-836.
    韩志国,欧阳昊,林娴,等.蛋白核小球藻光驯化的快速光曲线变化[J]. 生态科学, 2006,25:32-33.
    潘洁,施定基,陈建新,等.紫菜两个光系统间激发能分配研究对光合进化的启示[J].科学通报, 2000, 45:1276-1279.
    HAGER A. The reversible, light-induced conversions of xantophylls in the chloroplasts[M]//CZYGAN R D.Pigments in Plants, Stuttgart: Fischer,1980: 57-79.
    SATOH K, FORK D. A new mechanism for adaptation to changes in light intensity and quality in the red alga Porphyra perforata[J].Plant Physiol, 1983, 71: 673-676.
    BVCHEL C, WILHELM C. In vivo analysis of slow chlorophyll fluorescence induction kinetics in algae: progress, problems and perspectives [J]. Photochem Photobiol, 1993, 58: 137-148.
    HERBERT S K, WAALAND J R. Photoinhibition of photosynthesis in a sun and a shade species of the red algal genus Porphyra[J].Mar Biol, 1988, 97: 1-7.
  • 加载中
计量
  • 文章访问数:  1670
  • HTML全文浏览量:  21
  • PDF下载量:  2063
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-09-06

目录

    /

    返回文章
    返回