留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极低饱和度和近饱和状态下海水中方解石和文石溶解动力学研究

陶小晚 蒲晓强 王海强 袁智 周波

陶小晚, 蒲晓强, 王海强, 袁智, 周波. 极低饱和度和近饱和状态下海水中方解石和文石溶解动力学研究[J]. 海洋学报, 2011, 33(3): 63-73.
引用本文: 陶小晚, 蒲晓强, 王海强, 袁智, 周波. 极低饱和度和近饱和状态下海水中方解石和文石溶解动力学研究[J]. 海洋学报, 2011, 33(3): 63-73.
TAO Xiao-wan, PU Xiao-qiang, WANG Hai-qiang, YUAN Zhi, ZHOU Bo. Research on dissolution kinetics of calcite and aragonite in seawater with very low saturation state and near saturation[J]. Haiyang Xuebao, 2011, 33(3): 63-73.
Citation: TAO Xiao-wan, PU Xiao-qiang, WANG Hai-qiang, YUAN Zhi, ZHOU Bo. Research on dissolution kinetics of calcite and aragonite in seawater with very low saturation state and near saturation[J]. Haiyang Xuebao, 2011, 33(3): 63-73.

极低饱和度和近饱和状态下海水中方解石和文石溶解动力学研究

基金项目: 国家自然科学基金(40376038);近海海洋环境科学国家重点实验室(厦门大学)青年访问学者基金(MELRS0909)。

Research on dissolution kinetics of calcite and aragonite in seawater with very low saturation state and near saturation

  • 摘要: 利用free-drift开放反应系统,在恒压力(101.325 kPa)和恒温度(25.0±0.2) ℃环境条件下,研究人工海水中二氧化碳分压(pCO2)的变化对方解石和文石的溶解速率及反应级数的影响。研究结果表明:如果溶解实验中pCO2未达到完全平衡,计算得出的反应级数偏小,且反应液pCO2不平衡是造成不同反应阶段反应级数不同的主要原因。pCO2平衡时,文石和方解石反应级数n都介于8.0 ~ 9.5之间,其中方解石在pCO2为2 600×10-6和320×10-6条件下溶解反应级数分别为8.1和9.0;文石在pCO2为2 300×10-6和320×10-6条件下的溶解反应级数分别为9.5和9.0。当反应液pCO2平衡、Ω小于0.75时,文石的溶解速率大于方解石;当反应液pCO2平衡、Ω大于0.8时,文石的溶解速率小于方解石。
  • KRTZINGER A, MINTROP L, WALLACE D W R. The international at-sea intercomparison of fCO2 systems during the R/V Meteor Cruise 36/1 in the North Atlantic Ocean[J]. Marine Chemistry, 2000, 72(2-4):171-192.
    SABINE C L, FEELY R A, GRUBER N. The oceanic sink for anthropogenic CO2[J]. Science, 2004,305:367-371.
    CICERONE R, ORR J, BREWER P, et al. The ocean in a hight-CO2 world[J]. Oceanography,2004, 17(3):72-78.
    FEELY R A, SABINE C L, LEE K, et al. Impact of anthropogenic CO2 on the CaCO3 system in the oceans[J]. Science,2004. 305:362-366.
    MORSE J M, ARVIDSON R S. The dissolution kinetics of major sedimentary carbonate minerals[J]. Earth-Science Reviews, 2002, 58:51-84.
    MORSE J W. Dissolution kinetics of calcium carbonate in seawater:Ⅵ.The near-equilibrium dissolution kinetics of calcium carbonate-rich deep sea sediments[J]. American Journal of Science,1978,278:344-353.
    KEIR R S. The dissolution kinetics of biogenic calcium carbonates in seawater[J]. Geochimica et Cosmochimica Acta,1980,44: 241-252.
    HALES B, EMERSON S. Evidence in support of first-order dissolution kinetics of calcite in seawater[J]. Earth and Planetary Science Letters, 1997,148(1-2): 317-327.
    HALES B.Respiration, dissolution, and the lysocline[J].Paleoceanography,2003,18(4):1099.
    GEHLEN M, BASSINOT F C, CHOU L,et al. Reassessing the dissolution of marine carbonates: Ⅱ. Reaction kinetics[J].Deep-Sea Research:I,2005,52: 1461-1476.
    NANCOLLAS G H, KAZMLERCZAK T F, SCHUTTRINGER E. A controlled composition study of calcium carbonate crystal growth: the influence of scale inhibitors[J]. Corrosion, 1981, 37:76-80.
    ZHONG S J, MUCCI A. Calcite and aragonite precipitation from seawater solutions of various salinities: precipitation rates and overgrowth compositions[J]. Chemical Geology, 1989,78:283-299.
    MORSE J W. Dissolution kinetics of calcium carbonate in seawater: Ⅲ. A new method for the study of calcium carbonate reaction kinetics[J].American Journal of Science,1974,274:97-107.
    MUCCI A, MORSE J W. The incorporation of Mg2+ and Sr2+ into calcite overgrowths: influences of growth rate and solution composition[J]. Geochimica et Cosmochimica Acta, 1983,47:217-233.
    KAZMLERCZAK T F, TOMSON M B, NANCOLLAS G H. Crystal growth of calcium carbonate: a controlled composition kinetic study[J]. The Journal of Physical Chemistry, 1982,86:103-107.
    KESTER D P, DUEDALL I W, CONNORS D N, et al. Preparation of artificial seawater[J]. Limnology and Oceanography, 1967, 12(1): 176-179.
    MUCCI A. Growth kinetics and composition of magnesian calcite overgrowths precipitated from seawater-Quantitative influence of ortho-phosphate ions[J]. Geochimica et Cosmochimica Acta,1986,50:2255-2265.
    WRAY J L, DANIELS F. Precipitation of calcite and aragonite[J].Journal of the American Chemical Society, 1957,79: 2031-2034.
    GREGG S J, SING K S W. Adsorption, Surface Area, and Porosity[M].London: Academic Press, 1982:303.
    DOE. Handbook of methods for the analysis of the various parameters of the carbon dioxide system in seawater (Version 2) //DICKSON A G, GOYET C.ORNL/CDIAC-74. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee.1994.
    TAO Xiao-wan, PU Xiao-qiang, NI Yun-yan, et al. Determination of total alkalinity and calcium concentration of seawater rapidly and automaticly with small-amount samples . 3rd International Conference on Bioinformatics and Biomedical Engineering, iCBBE 2009.
    DICKSON A G. An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data[J]. Deep-Sea Research, 1981,28(A): 609-623.
    MUCCI A. The solubility of calcite and aragonite in seawater at various salinities, temperatures and one atmosphere total pressure[J]. American Journal of Science, 1983, 283: 780-799.
    KAUFMANN G, DREYBRODT W. Calcite dissolution kinetics in the system CaCO3-H2O-CO2 at hith undersaturation [J]. Geochimica et Cosmochimica Acta, 2007,71: 1398-1410.
    MUCCI A, SUNDBY B, GEHLEN M, et al. The fate of carbon in continental shelf sediments of eastern Canada: a case study[J]. Deep-Sea Research: Ⅱ, 2000, 47:733-760.
  • 加载中
计量
  • 文章访问数:  1432
  • HTML全文浏览量:  11
  • PDF下载量:  1719
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-06-15

目录

    /

    返回文章
    返回