留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2008年夏季白令海和北冰洋异养浮游细菌丰度与分布特征

林凌 何剑锋 张芳 蔡明红 陈建芳 赵云龙

林凌, 何剑锋, 张芳, 蔡明红, 陈建芳, 赵云龙. 2008年夏季白令海和北冰洋异养浮游细菌丰度与分布特征[J]. 海洋学报, 2011, 33(2): 166-174.
引用本文: 林凌, 何剑锋, 张芳, 蔡明红, 陈建芳, 赵云龙. 2008年夏季白令海和北冰洋异养浮游细菌丰度与分布特征[J]. 海洋学报, 2011, 33(2): 166-174.
LIN Ling, HE Jian-feng, ZHANG Fang, CAI Ming-hong, CHEN Jian-fang, ZHAO Yun-long. Heterotrophic bacterial abundance and distribution in the Bering Sea and the Arctic Ocean in the summer of 2008[J]. Haiyang Xuebao, 2011, 33(2): 166-174.
Citation: LIN Ling, HE Jian-feng, ZHANG Fang, CAI Ming-hong, CHEN Jian-fang, ZHAO Yun-long. Heterotrophic bacterial abundance and distribution in the Bering Sea and the Arctic Ocean in the summer of 2008[J]. Haiyang Xuebao, 2011, 33(2): 166-174.

2008年夏季白令海和北冰洋异养浮游细菌丰度与分布特征

基金项目: 国家自然科学基金面上项目(41076130);海洋公益行业专项(200805095);国家海洋局青年基金项目(2010116);国家海洋局海洋生态系统与生物地球化学重点实验室开放研究基金(LMEB200902);华东师范大学优秀博士论文基金(2010041)。

Heterotrophic bacterial abundance and distribution in the Bering Sea and the Arctic Ocean in the summer of 2008

  • 摘要: 利用2008年夏季我国第3次北极科学考察资料,基于流式细胞技术,对白令海北部陆架区的微微型浮游植物丰度、细胞大小(碳含量)、色素浓度的分布特征进行了分析,并对该类群的环境适应性进行了研究。结果表明,微微型浮游植物中仅含聚球藻和真核藻,其丰度范围分别为0.14×106 2.69×106和0.23×106-12.49×106个/dm3。聚球藻的叶绿素a和藻红蛋白含量、微微型真核藻的叶绿素a含量与类群丰度以及微微型真核藻的类胡萝卜素含量与细胞大小间均存在同向变化趋势。两类藻偏向于喜温嗜淡型,更适合在寡营养环境中保持较高的丰度,但能在高营养盐浓度下形成相对较高的碳含量。越接近陆地,细胞越小,丰度越大,碳含量及FL2/FL3越低;所处层位越深、纬度越高,则细胞越大,碳含量及FL2/FL3越高。北极气温升高和径流量的增加有利于陆架区微微型浮游植物类群丰度的增加。
  • AZAM F, FENCHEL T, FIELD J G. The ecological role of water column microbes in the sea[J]. Mar Ecol Prog Ser, 1983, 10: 257—263.
    AZAM F, MALFATTI F. Microbial structuring of marine ecosystems[J]. Nature, 2007, 5: 782—792.
    COLE J J, PACE M. Bacteria production in fresh and saltwater ecosystems: a cross-system overview[J]. Mar Ecol Prog Ser, 1988, 43: 1—10.
    LI W K W. Annual average abundance of heterotrophic bacteria and Synechococcus in surfae ocean waters[J]. Limnol Oceanog, 1998, 43: 1746—1753.
    LI W K W, HEAD E J H, HARRISON. Macroecological limits of heterotrophic bacterial abundance in the ocean[J]. Deep-Sea Res, 2004, 51(11): 1529—1540.
    KIRCHMAN D L. Incorporation of thymadine and leucine in the subarctic Pacific: application to estimating bacterial production[J]. Mar Ecol Prog Ser, 1992, 82: 301—309.
    KIRCHMAN D L. The uptake of inorganic nutrients by heterotrophic bacteria[J]. Microb Ecol, 1994, 28: 255—271.
    COTA G F, POMEROY L R, HARRISON W G, et al. Nutrient, primary production and microbial heterotrophy in the southeastern Chukchi Sea: Arctic summer nutrient depletion and heterotrophy[J]. Mar Ecol Prog Ser, 1996, 135: 247—258.
    LIU H B, SUUKIL K, MINAMI C, et al. Picoplankton community structure in the subarctic Pacific Ocean and the Bering Sea during summer 1999[J]. Mar Ecol Prog Ser, 2002, 237: 1—14.
    SHERR E B, SHERR B F, WHELER P A, et al. Temporal and spatial variation in stocks of autotrophic and heterotrophic microbes in the upper water column of the central Arctic Ocean[J]. Deep-Sea Res, 2003, 50: 557—571.
    STEWARD G F, FANDINO L B, HOLLIBAUGH J T, et al. Microbial biomass and viral infections of heterotrophic prokaryotes in the sub-surface layer of the central Arctic Ocean[J]. Deep-Sea Res, 2007, 54: 1744—1757.
    何剑锋, 陈波, 曾胤新, 等. 白令海夏季浮游细菌和原生动物生物量及分布特征[J]. 海洋学报, 2005, 27(4): 127—134.
    GRASSHOFF K, EHRHARDT M, KREMLING K. Methods of seawater analysis. 3rd[M]. Weinheim: Verlag Chemie GmbH. 1999: 600.
    PARSONS T R, MAITA Y, LALLI C M. A Manual of Chemical and Biological Methods for Seawater Analysis[M]. New York: Pergamon Press, 1984: 173.
    BALFOORT H W, BERMAN T H, MAESTRINI SY, et al. Flow cytometry: instrumentation and application in phytoplankton research[J]. Hydrobiologia, 1992, 238: 89—97 .
    BINDER B J, CHISHOLM S W, OLSON R J, et al. Dynamics of pico-phytoplankton, ultra-phytoplankton, and bacteria in the Central Equatorial Pacific[J]. Deep-Sea Res Ⅱ, 1996, 43: 907—931.
    SCARRATT MG, MARCHETTI A, HALE MS, et al. Assessing microbial responses to iron enrichment in the subarctic Northeast Pacific: Do microcosms reproduce the in situ condition [J] Deep-Sea Res Ⅱ, 2006, 53: 2182—2200.
    KIRCHMAN D L, HILL V, COTTRELL M T, et al. Standing stocks, production, and respiration of phytoplankton and heterotrophic bacteria in the western Arctic Ocean. Deep-Sea Res Ⅱ,2009, doi: 10.1016/j.dsr2.2008.10.018.
    BELZILE C, BRUGEL S, NOZAIS C, et al. Variations of the abundance and nucleic acid content of heterotrophic bacteria in Beaufort shelf waters during winter and spring[J]. J Mar Syst, 2008, 74: 946—956.
    STEWARD G F, SMITH D C, AZAM F. Abundance and production of bacteria and viruses in the Bering and Chukchi Seas[J]. Mar Ecol Prog Ser, 1996, 131: 287—300.
    WANG M, OVERLAND J E. A sea ice free summer Arctic within 30 years[J]. Geophys Res Lett, 2009, 36.
    LI W K W, MCLAUGHLIN C, LOVEJOY C, et al. Smallest algae thrive as the Arctic Ocean freshens[J]. Science, 2009, 326(5952): 539.
    KIRCHMAN D L, MOR N X A G, DUCKLOW H. Microbial growth in the polar oceans - role of temperature and potential impact of climate change[J]. Nature, 2009, 7: 451—459.
    RIVKIN R B, ANDERSON M R, LAJZEROWICZ C. Microbial processes in cold oceans. I. Relationship between temperature and bacterial growth rate[J]. Aquat Microb Ecol, 1996, 10 (3): 243—254.
    JENNIFER C, JAMES A, ELLEN T. Utilization and turnover of labile dissolved organic matter by bacterial heterotrophs in eastern North Pacific surface waters[J]. Mar Ecol Prog Ser, 1996, 139: 267—279.
    DUCKLOW H W. Factors regulating bottom-up control of bacteria biomass in open ocean plankton communities[J]. Arch Hydrobiol Beih, 2002, 37: 207—217.
    KIRCHMAN D L, KEIL G K, SIMON M. Biomass and production of heterotrophic bacterioplankton in the oceanic subarctic Pacific[J]. Deep-Sea Res, 1993, 40: 967—988.
    RICH J, GOSSELIN M, SHERR E, et al. High bacterial production, uptake and concentrations of dissolved organic matter in the Central Arctic ocean[J]. Deep-Sea Res II, 1997, 44: 1645—1663.
    KIRCHMAN D L, MALMSTROM R R, COTTRELL M T. Control of bacterial growth by temperature and organic matter in the Western Arctic[J]. Deep-Sea Res II, 2005, 52: 3386—3395.
    POMEROY L R, WIRBE W J. Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria[J]. Aquat Microb Ecol, 2001, 23:187—204.
    KIRCHMAN D L. Uptake and regeneration of inorganic nutrients by marine heterotrophic bacteria[M]// KIRCHMAN D L. Microbial Ecol of the Oceans. New York: John Wiley and Sons, 2000: 261—288.
    FOUILLAND E, GOSSELIN M, RIVLIN R B, et al. Nitrogen uptake by heterotrophic bacteria and phytoplankton in Arctic surface waters[J]. J Plankt Res, 2007, 29(4): 369—376.
    ALLEN A E, HOWARD-HONES MH, BOOTH M G, et al. Importance of heterotrophic bacterial assimilation of ammonium and nitrate in the Barents Sea during summer[J]. J Mar Syst, 2002, 38:93—108.
    GREBMEIER J M, COOPER L W, FEDER H M, et al. Ecosystem dynamics of the Pacific-influenced Northern Bering and Chukchi Seas in the Amerasian Arctic[J]. Prog Oceanogr, 2006, 71: 331—361.
  • 加载中
计量
  • 文章访问数:  1676
  • HTML全文浏览量:  5
  • PDF下载量:  1471
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-08-12

目录

    /

    返回文章
    返回