留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

白令海表层营养盐水平输送的镭-228示踪

邢娜 陈敏 黄奕普 邱雨生

邢娜, 陈敏, 黄奕普, 邱雨生. 白令海表层营养盐水平输送的镭-228示踪[J]. 海洋学报, 2011, 33(2): 77-84.
引用本文: 邢娜, 陈敏, 黄奕普, 邱雨生. 白令海表层营养盐水平输送的镭-228示踪[J]. 海洋学报, 2011, 33(2): 77-84.
XING Na, CHEN Min, HUANG Yi-pu, QIU Yu-sheng. The cross-shelf exchange of surface nutrients in the Bering Sea elucidated from 228Ra tracer[J]. Haiyang Xuebao, 2011, 33(2): 77-84.
Citation: XING Na, CHEN Min, HUANG Yi-pu, QIU Yu-sheng. The cross-shelf exchange of surface nutrients in the Bering Sea elucidated from 228Ra tracer[J]. Haiyang Xuebao, 2011, 33(2): 77-84.

白令海表层营养盐水平输送的镭-228示踪

基金项目: 国际极地年中国行动计划项目;中国第三次北极科学考察资助项目;福建省自然科学基金杰出青年基金项目(2009J06026)。

The cross-shelf exchange of surface nutrients in the Bering Sea elucidated from 228Ra tracer

  • 摘要: 对白令海表层海水228Ra的分析表明,白令海表层海水228Ra比活度从低于检测限变化至0.81 Bq/m3,低于西北冰洋陆架区的报道值。表层水228Ra比活度和228Ra/226Ra)A.R.的空间分布均呈现由西南部中心海盆向东北部陆架区增加的趋势。由228Ra/226Ra)A.R.和盐度的关系揭示出白令海环流、白令海陆坡流和阿拉斯加沿岸流对228Ra和228Ra/226Ra)A.R.分布有明显影响。运用一维稳态扩散模型计算出白令海由中心海盆向东北部陆架方向上水体混合的水平涡动扩散系数为1.9×108 m2/d。结合海盆-陆架界面营养盐的水平浓度梯度,估算得硝酸盐、活性磷酸盐和活性硅酸盐由白令海中心海盆向东北部陆架区的水平输送通量,该通量对白令海东北部陆架区新生产力的贡献很小,其他途径输送的营养盐更为重要。
  • GREBMEIER J M, COOPER L W, DENIRO M J. Oxygen isotopic composition of bottom seawater and tunicate cellulose used as indicators of water masses in the northern Bering and Chukchi Seas [J]. Limnology and Oceanography, 1990, 35(5): 1182—1195.
    HARRISON P J, BOYD P W, VARELA D E, et al. Comparison of factors controlling phytoplankton productivity in the NE and NW subarctic Pacific gyres [J]. Progress in Oceanography, 1999, 43: 205—234.
    KINDER T H, COACHMAN L K, GALT J A. The Bering slope current system [J]. Journal of Physical Oceanography, 1975, 5: 231—244.
    KINDER T H, CHAPMAN D C, WHITEHEAD J A. Westward intensification of the mean circulation on the Bering Sea shelf [J]. Journal of Physical Oceanography, 1986, 16: 1217—1229.
    KINNEY J C, MASLOWSKI W, OKKONEN S. On the processes controlling shelf-basin exchange and outer shelf dynamics in the Bering Sea [J]. Deep-Sea Research II, 2009, 56: 1351—1362.
    BANSE K, ENGLISH D C. Comparing phytoplankton seasonality in the eastern and western subarctic Pacific and the western Bering Sea [J]. Progress in Oceanography, 1999, 43: 235—288.
    陈敏,黄奕普,邱雨生. 白令海盆氮吸收速率的同位素示踪 [J].自然科学进展, 2007, 17(12): 1672—1684.
    陈立奇,高众勇,王伟强,等. 白令海盆pCO2分布特征及其对北极碳汇的影响[J].中国科学(D辑), 2003, 33(8): 781—790.
    SAMBROTTO R N, GOERING J J, McROY C P. Yearly production of phytoplankton in the western Bering Strait[J]. Science, 1984, 225: 1147—1150.
    SOROKIN Y I. Data on primary production in the Bering Sea and adjacent Northern Pacific[J]. Journal of Plankton Research, 1999, 21(4): 615—636.
    XING N, CHEN M, HUANG Y P, et al. The distribution of 226Ra in the Arctic Ocean and the Bering Sea and its hydrologic implications[J]. Science in China:Series D, 2003, 46(5): 516—528.
    谢永臻,黄奕普,施文远,等.天然水体中 226Ra,228Ra的联合富集与测定 [J].厦门大学学报:自然科学版, 1994, 33(Sup): 86—90.
    CHEN M, XING N, HHANG Y P, et al. The mean residence time of river water in the Canada Basin [J]. Chinese Science Bulletin, 2008, 53(5): 777—783.
    金明明, 林以安, 卢勇, 等. 1999年7月白令海海盆营养盐和溶解氧的垂直特征[J]. 极地研究, 2001, 13(4): 264—272.
    KAUFMAN A, TRIER R M, BROECKER W S, et al. Distribution of 228Ra in the world ocean[J]. Journal of Geophysical Research,1973, 78: 8827—8848.
    MORDY C W, STABENO P J, RIGHT D, et al. Origins of the subsurface ammonium maximum in the southeast Bering Sea [J]. Deep-Sea Research:II, 2008, 55: 1738—1744.
    WALSH J J, McROY C P, COACHMAN L K, et al. Carbon and nitrogen cycling within Bering/Chukchi Seas: source regions for organic matter affect AOU demands of the Arctic Ocean[J]. Progress in Oceanography, 1989, 22: 277—359.
    MOORE W S. Radium-228: application to thermocline mixing studies[J]. Earth and Planetary Science Letters, 1972, 16: 421—422.
    MOORE W S. Radum-228 in the South Atlantic Bight[J]. Journal of Geophysical Research, 1987, 92(C5): 5177—5190.
    谢永臻.南海及厦门邻近海域镭同位素地球化学的研究 .厦门:厦门大学, 1994.
    MOORE W S, FEELY H W, LI Y H. Radium isotopes in sub-arctic waters[J]. Earth and Planetary Science Letters, 1980, 49: 329—340.
    COACHMAN L K. Circulation, water masses, and fluxes on the southeastern Bering Sea shelf [J]. Continental Shelf Research, 1986, 5: 23—108.
    COACHMAN L K, WALSH J J. A diffusion model of cross-shelf exhange of nutrients in the southeastern Bering Sea[J]. Deep-Sea Research, 1981, 28: 819—846.
    WALSH J J, McROY C P. Ecosystem analysis in the southeastern Bering Sea[J]. Continental Shelf Research, 1986, 5: 259—288.
    WHITLEDGE T E, REEBURGH W S, WALSH J J. Seasonal inorganic nitrogen distribution and dynamics in the southeastern Bering Sea [J]. Continental Shelf Research, 1986, 5: 109—132.
    STABENO P, NAPPY J, MORDY C, et al. Factors influencing physical structure and lower trophic levels of the eastern Bering Sea shelf in 2005: sea ice, tides and winds [J]. Progress in Oceanography, 2010, 85: 180—196.
    CHEN L Q, GAO Z Y. Spatial variability in the partial pressures of CO2 in the northern Bering and Chukchi Seas [J]. Deep-Sea Research:II, 2007, 54: 2619—2629.
  • 加载中
计量
  • 文章访问数:  1507
  • HTML全文浏览量:  6
  • PDF下载量:  1263
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-08-05

目录

    /

    返回文章
    返回