留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄海冷水团水域浮游植物群落粒级结构的季节变化

傅明珠 孙萍 王宗灵 李艳 李瑞香

傅明珠, 孙萍, 王宗灵, 李艳, 李瑞香. 黄海冷水团水域浮游植物群落粒级结构的季节变化[J]. 海洋学报, 2010, 32(1): 120-129.
引用本文: 傅明珠, 孙萍, 王宗灵, 李艳, 李瑞香. 黄海冷水团水域浮游植物群落粒级结构的季节变化[J]. 海洋学报, 2010, 32(1): 120-129.
FU Mingzhu, SUN Ping, WANG Zongling, LI Yan, LI Ruixiang. Seasonal variations of phytoplankton community size structures in the Huanghai(Yellow) Sea Cold Water Mass area[J]. Haiyang Xuebao, 2010, 32(1): 120-129.
Citation: FU Mingzhu, SUN Ping, WANG Zongling, LI Yan, LI Ruixiang. Seasonal variations of phytoplankton community size structures in the Huanghai(Yellow) Sea Cold Water Mass area[J]. Haiyang Xuebao, 2010, 32(1): 120-129.

黄海冷水团水域浮游植物群落粒级结构的季节变化

基金项目: 中国近海海洋综合调查与评价专项课题(908-1-ST03);UNDP/GEF黄海大海洋生态系示范项目(E-I-ratiochgdemo-2135)。

Seasonal variations of phytoplankton community size structures in the Huanghai(Yellow) Sea Cold Water Mass area

  • 摘要: 根据2006—2007年度4个季节航次的实测资料,分析了黄海冷水团水域浮游植物叶绿素及其粒级结构的时空分布特征及季节变化规律,结果表明,在研究海域30 m以浅叶绿素总量的平均含量从高到低的顺序为:春季的(1.01 mg/m3)、夏季的 (0.81 mg/m3)、秋季 (0.72 mg/m3)、冬季(0.68 mg/m3);在叶绿素浓度大于1 mg/m3和小于1 mg/m3的区域浮游植物粒级结构差异较大,在整个研究海域,粒径较小的微型和微微型浮游植物对总生物量的贡献始终占主导(>65%),粒径较大的小型浮游植物在冬季和春季贡献率相对较高;从季节尺度看,浮游植物的平均粒级指数从大到小的顺序为:春季的(15.47 μm),冬季的(11.08 μm),秋季的(8.61 μm),夏季的(6.52 μm);尽管不同季节水文和化学环境差异显著,但是不同粒径浮游植物的贡献率随总生物量的变化表现出一致性的规律。对环境因子与叶绿素分布的相关分析表明,浮游植物的生长在夏季主要受到营养盐来源的限制,冬季主要受到水体混合引起的光照限制,秋季可能受到磷酸盐和水体混合的共同限制。浮游植物粒级结构的分布格局主要是由各组分在不同环境中的资源竞争优势决定的。
  • CLOERN J E, DUFFORD R. Phytoplankton community ecology: principles applied in San Francisco Bay [J]. Marine Ecology Progress Series, 2005, 285: 11—28.
    BUTR N A, IRIARTE A, MADARIAGA I. Sizefractionated phytoplankton biomass, primary production and respiration in the Nervión-Ibaizabal estuary: a comparison with other nearshore coastal and estuarine ecosystems from the Bay of Biscay [J]. Continental Shelf Research, 2009, 29: 1088—1102.
    CUSHING D H. A difference in structure between ecosystems in strongly stratified waters and in those that are only weakly stratified [J]. Journal of Plankton Research, 1989, 11: 1—13.
    LEGENDRE L, RASSOULZADEGAN F. Foodweb mediated export of biogenic carbon in oceans: hydrodynamic control [J]. Marine Ecology Progressive Series, 1996, 145: 179—193.
    FRONEMAN P W, PAKHOMOV E A, BALARIN M G. Sizefractionated phytoplankton biomass, production and biogenic carbon flux in the eastern Atlantic sector of the Southern Ocean in late austral summer 1997—1998 [J]. DeepSea Research:II, 2004, 51: 2715—2729.
    CERMEO P, MARAóN E, PREZ V, et al. Phytoplankton size structure and primary production in a highly dynamic coastal ecosystem (Ría de Vigo, NWSpain): seasonal and shorttime scale variability [J]. Estuarine, Coastal and Shelf Science, 2006,67:251—266.
    IRWIN A J, FINKEL Z V, SCHOFIELD O M E, et al. Scaling up from nutrient physiology to the sizestructure of phytoplankton communities [J]. Journal of Plankton Research, 2006, 28: 459—471.
    TREMBLAY J E, KLEIN B, LEGENDRE L. Estimation of fratio in oceans based on phytoplankton size structure [J]. Limnology and Oceanography, 1997, 42(3):595—601.
    RAVEN J A. The twelfth Transley Lecture. Small is beautiful: the picophytoplankton [J]. Functional Ecology, 1998,12:503—513.
    FINKEL Z V.Light absorption and size scaling of lightlimited metabolism in marine diatoms [J]. Limnology and Oceanography, 2001, 46: 86—94.
    MARA N E.Phytoplankton size structure[M]//STEELE J H,TUREKIAN K K,THORPE S A. Encyclopedia of Ocean Sciences.2nd ed.Oxford:Academic Press, 2009: 4249—4256.
    CERME O P, MARA N E, RODRGUEZ J, FERNDEZ. Largesized phytoplankton sustain higher carbonspecific photosynthesis than smaller cells in a coastal eutrophic ecosystem [J]. Marine Ecology Progress Series, 2005, 297: 51—60.
    CHISHOLM S W. Phytoplankton size //FALKOWSKI P G, WOODHEAD A D. Primary Productivity and Biogeochemical Cycles in the Sea. New York:Plenum, 1992: 213—237.
    MARAN E, HOLLIGAN P M, BARCIELA R, et al. Patterns of phytoplankton sizestructure and productivity in contrasting open ocean environments [J]. Marine Ecology Progress Series, 2001, 216:43—56.
    ARIN L, ESTRADA M, SALAT J, et al.Spatiotemporal variability of size fractionated phytoplankton on the shelf adjacent to the Ebro River (NW Mediterranean) [J]. Continental Shelf Research, 2005,25:1081—1095.
    张波,唐启升,金显仕.黄海生态系统高营养层次生物群落功能群及其主要种类[J].生态学报,2009,29(3):1099—1111.
    王保栋.黄海冷水域生源要素的变化特征及相互关系[J].海洋学报,2000, 22(6):47—54.
    张书文,夏长水,袁业立.黄海冷水团水域物理-生态耦合数值模式研究[J].自然科学进展,2002,12(3):315—319.
    李洪波,肖天,丁涛,等.浮游细菌在黄海冷水团中的分布[J].生态学报,2006,26(4):1012—1020.
    PU X M, SUN S, YANG B, et al, The combined effects of temperature and food supply on Calanus sinicus in the southern Yellow Sea in summer [J]. Journal of Plankton Research,2004, 26(9): 1049—1057.
    孙松,王荣,张光涛,等.黄海中华哲水蚤度夏机制[J].海洋与湖沼:浮游动物研究专辑,2002,92—99.
    黄邦钦,刘媛,陈纪新,等.东海、黄海浮游植物生物量的粒级结构及时空分布[J].海洋学报,2006,28(2):156—164.
    邓春梅,于志刚,姚鹏,等.东海、南黄海浮游植物粒级结构及环境影响因素分析[J].中国海洋大学学报,2008,38(5):791—798.
    BRICAUD A, CLAUSTRE H, RAS J, et al. Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations[J]. Journal of Geophysical Research, 2004,109:C11010.
    JUST C D, RABALAIS N N, TURNER R E, et al. Changes in nutrient structure of riverdominated coastal waters: stoichiomitric nutrient balance and its consequences [J]. Estuarine, Coastal and Shelf Science, 1995, 40:339—356.
    胡好国,万振文,袁业立.南黄海浮游植物季节性变化的数值模拟与影响因子分析[J].海洋学报,2004,26(6):74—88.
    RIEGMAN R, KUIPERS B R, NOORDELOOS A A M, et al. Sizedifferential control of phytoplankton and the structure of plankton communities[J]. Netherlands Journal of Sea Research, 1993,31:255—265.
    NOIRI Y, KUDO I, KIYOSAWA H, et al. Influence of iron and temperature on growth, nutrient utilization ratios and phytoplankton species composition in the western subarctic Pacific Ocean during the SEEDS experiment [J]. Prog Oceanogr , 2005, 64: 149—166.
    HARE C E, LEBLANC K, DITULLIO G R, et al. Consequences of increased temperature and CO2 for phytoplankton community structure in the Bering Sea [J]. Marine Ecology Progress Series, 2007, 352: 9—16.
    FALKOWSKI P G, OLIVER M J. Mix and match: how climate selects phytoplankton [J]. Nature, 2007, 5: 813—819.
    AGAWIN N R S, DUARTE C M, AGUST S.Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production [J]. Limnology and Oceanography , 2000, 45:591—600.
    SAVIDGE G, GIOPIN L. Seasonal influences on sizefractionated chlorophyll a concentrations and primary production in the northwest Indian Ocean [J]. DeepSea Research, 1999,46:701—723.
    DRAKARE S, BLOMQUIST P, BERGSTR M A K, et al. Relationships between picophytoplankton and environmental variables in lakes along a gradient of water colour and nutrient content [J]. Freshwater Biology, 2003, 48: 729—740
    FINKEL Z V, IRWIN A J, SCHOFIELD O. Resource limitation alters the 3/4 size scaling of metabolic rates in phytoplankton [J]. Marine Ecology Progress Series, 2004, 273:269—279.
    LI W K W. Macroecological patterns of phytoplankton in the northwestern North Atlantic Ocean [J]. Nature, 2002, 149:154—157.
    ZARAUZ L, IRIGOIEN X, FERNANDES J A. Changes in plankton size structure and composition, during the generation of a phytoplankton bloom, in the central Cantabrian sea [J]. Journal of Plankton Research, 2009, 31:193—207.
  • 加载中
计量
  • 文章访问数:  1456
  • HTML全文浏览量:  33
  • PDF下载量:  908
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-08-20

目录

    /

    返回文章
    返回