留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于神经网络方法的C波段和Ku波段统一地球物理模型

邹巨洪 林明森 潘德炉 陈正华 杨乐

邹巨洪, 林明森, 潘德炉, 陈正华, 杨乐. 基于神经网络方法的C波段和Ku波段统一地球物理模型[J]. 海洋学报, 2008, 30(5): 23-28.
引用本文: 邹巨洪, 林明森, 潘德炉, 陈正华, 杨乐. 基于神经网络方法的C波段和Ku波段统一地球物理模型[J]. 海洋学报, 2008, 30(5): 23-28.
ZOU Ju-hong, LIN Ming-sen, PAN De-lu, CHEN Zheng-hua, YANG Le. A unified C-band and Ku-band GMF determined by using neural network approach[J]. Haiyang Xuebao, 2008, 30(5): 23-28.
Citation: ZOU Ju-hong, LIN Ming-sen, PAN De-lu, CHEN Zheng-hua, YANG Le. A unified C-band and Ku-band GMF determined by using neural network approach[J]. Haiyang Xuebao, 2008, 30(5): 23-28.

基于神经网络方法的C波段和Ku波段统一地球物理模型

A unified C-band and Ku-band GMF determined by using neural network approach

  • 摘要: 通过地球物理模型建立后向散射系数与海面风矢量的关系,可将散射计从不同方位角测得的风矢量单元后向散射系数反演得到风矢量,因此地球物理模型在风速反演中起着至关重要的作用。使用神经网络方法,利用C波段经验模型CMOD4和Ku波段经验模型QSCAT—1仿真数据建立了形式统一的C波段和Ku波段地球物理模型。新模型将电磁波频率作为模型的参数之一,使新模型不再局限于特定的传感器,并使C波段与Ku波段具有统一的形式。分析表明,由新模型建立的后向散射系数与海面风矢量的关系同经验模型具有很好的可比性。利用新模型反演的风速与CMOD4和QSCAT—1模型反演的风速具有很好的一致性,说明新模型在具有统一简洁形式的同时也兼有与经验统计模型相同的有效性。
  • CHI Chong-yun,LI Fuk K.A comparative study of several wind estimation algorithms for spaceborne scatterometer[J].IEEE Transactions on Geoscience and Remote Sensing,1988,26(2):115-121.
    HOWARD Schultz.A circular median filter approach for resolving directional ambiguities in wind fields retrieved from spaceborne scatterometer data[J].J Geophys Res,1990,95(C4):5291-5303.
    LECOMPTE P.CMOD4 model description[K],issue 1.2.Frascati,Italy:ESA/ESRIN,1993:1-8.
    JPL.QuikSCAT Science Data Product User's Manual[K].Vet 2.1.California:JPL NASA.2001:36-42.
    SCHROEDER L C,BOGGS D H,DOME G J,et al.The relationship between wind vector and normalized radar cross section used to derive SEASAT-A satellite scatterometer winds[J].J Geophys Res,1982,87 (5):3318-3336.
    NGH1EM S V,LI F K,NEUMANN G.Ku-band ocean backscatter functions for surface wind retrieval[C]//Proceedings of the 1996 International Geoscience and Remote Sensing Symposium on Remote Sensing for a Sustainable Future.Lincoln,NE.New York:WileyIEEE Press,1996:1469-1471.
    WENTZ F J,PETEHERYCH S,THOMAS L A.A model function for ocean radar cross sections aT-14.6 GHz[J].J Geophys Res,1984,89(C3):3689-3704.
    WENTZ F J,FREILICH M H,SMITH D K.NSCAT-2 geophysical model function[C]//1998 Fall AGU Meet.San Francisco,CA.Washington D.C.:AGU Press,1998.
    WENTZ F J,SMITH D K.A model function for the ocean-normalized radar cross section aT-14 GHz derived from NSCAT observations[J].J GeophysRes,1999,104(C5):11499-11514.
    Hans Hersbach Research Department.CMOD5:an improved geophysical model function for ERS C-band scatterometry[G]//ECMWF Technical Memoranda No.395.Berkshize RG29AX,England:ECMWF,2003.
    RICHAUME P,BADRAN F,CREPON M,et al.Neural network wind retrieval from ERS—1 scatterometer data[J].J Geophys Res,2000,105(C4):8737-8751.
    THIRIA S,MEJIA C,BADRAN F.A neural network approach for modelling nonlinear transfer functions:application for wind retrieval from spaceborne scatterometer data[J].J Geophys Res,1993,98(C12):22827-22841.
    MEJ IA C,THIRIA S,BADRAN F,et al.Determination of the geophysical model function of ERS1 scatterometer by the use of neural networks[J].J Geophys Res,1998,103 (C6):12853-12868.
    MEJ I A C,BADRAN F,BENTAMY A,et al.Determination of the geophysical model function of NSCAT and its corresponding variance by the use of neural networks[J].J Geophys Res,1999,104:11539 11556.
    LIN Ming-sen,SONG Xin gai,JIANG Xin gwei.Neural network wind retrieval from ERS-1/2 seatterometer data[J].Aeta Oceano logica Sinica,2006,25(3):35-39.
    工新中,姜景山.旋转扫描散射计海面风场检测仿真研究[J].遥感学报,1 997,1(3):185-191.
    WENTZ F J.Measurement of oceanic wind vector using satellite microwave radiometers[J].IEEE Transactions on Geoseienee and Remote Sensing,1992,30 (5):960-972.
  • 加载中
计量
  • 文章访问数:  982
  • HTML全文浏览量:  28
  • PDF下载量:  1142
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-05-28
  • 修回日期:  2008-06-28

目录

    /

    返回文章
    返回