留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

加强的适合复杂地形的水波方程及其一维数值模型验证

刘忠波 邹志利 孙昭晨

刘忠波, 邹志利, 孙昭晨. 加强的适合复杂地形的水波方程及其一维数值模型验证[J]. 海洋学报, 2008, 30(3): 117-125.
引用本文: 刘忠波, 邹志利, 孙昭晨. 加强的适合复杂地形的水波方程及其一维数值模型验证[J]. 海洋学报, 2008, 30(3): 117-125.
LIU Zhong-bo, ZOU Zhi-li, SUN Zhao-chen. Enhanced Boussinesq equations for rapidly varying topographies and their one-dimensional numerical validation[J]. Haiyang Xuebao, 2008, 30(3): 117-125.
Citation: LIU Zhong-bo, ZOU Zhi-li, SUN Zhao-chen. Enhanced Boussinesq equations for rapidly varying topographies and their one-dimensional numerical validation[J]. Haiyang Xuebao, 2008, 30(3): 117-125.

加强的适合复杂地形的水波方程及其一维数值模型验证

基金项目: 国家自然科学基金资助项目(50479053;10672034)

Enhanced Boussinesq equations for rapidly varying topographies and their one-dimensional numerical validation

  • 摘要: 在他人给出的方程的基础上,通过在其动量方程中引入含4个参数的公式,推导出了加强的适合复杂地形的水波方程,新方程的色散、变浅作用以及非线性均比原来适合复杂地形的方程有了改善:色散关系式与斯托克斯线性波的Padé(4,4)阶展开式一致;变浅作用在相对水深(波数乘水深)不大于6时与解析解符合较好;非线性在相对水深不大于1.05时保持在5%的误差之内.基于该方程,在非交错网格下建立的时间差分格式为混合4阶Adams-Bashforth-Moulton的一维数值模型,并在数值计算中利用了五对角宽带解法.数值模拟了潜堤上波浪传播变形,并将数值计算结果与实验结果进行了对比,验证了该数值模型是合理的.
  • PEREGRINE D H.Long waves on a beach[J].Journal of Fluid Mechanics,1967,27(4):815-827.
    MADSEN P A,SφRENSEN O R.A new form of the Boussinesq equations with improved linear dispersion characteristics:Part 2.A slowly-varying bathymetry[J].Coastal Engineering,1992,18:183-204.
    NWOGU O.An alternative form of the Boussinesq equations for nearshore wave propagation[J].Journal of Waterway,Port,Coastal and Ocean Engineering,1993,119(6):618-638.
    SCHAFFER H A,MADSEN P A.Further enhancements of Boussinesq-type equations[J].Coastal Engineering,1995,26:1-14.
    MADSEN P A,SCHAFFER H A.Higher-order Boussinesq-type equations for surface gravity waves:derivation and analysis[J].Philosophicai Transations of Royal Society of London Series A——Mathematical Physical and Engineering Sciences,1998,356:3123-3184.
    MADSEN P A,BINGHAM H B,LIU Hua.A new method for fully nonlinear waves from shallow water to deep water[J].Journal of Fluid Mechanics,2002,462:1-30.
    邹志利.含强水流高阶Boussinesq水波方程[J].海洋学报,2000,22(4):41-50.
    邹志利.适合复杂地形的高阶Boussinesq方程[J].海洋学报,2001,23(1):109-119.
    WEI G E,KIRBY J T.A time-dependent numerical code for extended Boussinesq equations[J].Journal of Waterway,Port,Coastal and Ocean Engineering,1995,121:251-261.
    GOBBI M F,KIRBY J T.Wave evolution over submerged sills:tests of a high-order Boussinesq model[J].Coastal Engineering,1999,37:57-96.
    刘忠波.高阶Boussiensq方程的研究[D].大连:大连理工大学,2006.
    KIRBY J T,WEI G E,CHEN Qin,et.al.FUNWAVE 1.0:fully nonlinear Boussinesq wave model.Documentation and User's Manual[M]//Center for Applied Coastal Research,Department of Civil and Environmental Engineering,University of Delaware,1998:80.
    LUTH H R,KLOPMAN G,KITOU N.Kinematics of waves breaking partially on an offshore bar,LDV measurements of waves with and without a net onshore current[R]//Report H——1573.Delft Hydraulics,1994:40.
  • 加载中
计量
  • 文章访问数:  858
  • HTML全文浏览量:  14
  • PDF下载量:  1329
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-01-23
  • 修回日期:  2007-09-25

目录

    /

    返回文章
    返回