留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

白令海夏季浮游细菌和原生动物生物量及分布特征

何剑锋 陈波 曾胤新 KANGS-H 王桂忠

何剑锋, 陈波, 曾胤新, KANGS-H, 王桂忠. 白令海夏季浮游细菌和原生动物生物量及分布特征[J]. 海洋学报, 2005, 27(4): 127-134.
引用本文: 何剑锋, 陈波, 曾胤新, KANGS-H, 王桂忠. 白令海夏季浮游细菌和原生动物生物量及分布特征[J]. 海洋学报, 2005, 27(4): 127-134.
HE Jian-feng, CHEN Bo, ZENG Yin-xin, KANG S-H, WANG Gui-zhong. Biomass and distribution characteristics of bacteria and protozoa in the Bering Sea in summer[J]. Haiyang Xuebao, 2005, 27(4): 127-134.
Citation: HE Jian-feng, CHEN Bo, ZENG Yin-xin, KANG S-H, WANG Gui-zhong. Biomass and distribution characteristics of bacteria and protozoa in the Bering Sea in summer[J]. Haiyang Xuebao, 2005, 27(4): 127-134.

白令海夏季浮游细菌和原生动物生物量及分布特征

基金项目: 国家自然科学基金资助项目(40006010,30270112);科技部基础数据(2003DEB5J057)资助项目

Biomass and distribution characteristics of bacteria and protozoa in the Bering Sea in summer

  • 摘要: 1999年7月21日至8月1日在我国首次北极科学考察期间,考察了白令海中部的浮游细菌和原生动物,分析了其丰度、分布、生物量及其生态作用,结果显示,浮游细菌表层生物量为1.5~20.2μg/dm3,平均为浮游植物生物量的30%,100m以上水柱柱总生物量(720~3123mg/m2)平均为浮游植物柱总生物量的67%,因而是白令海夏季与浮游植物处同等量级的优势类群;原生动物表层生物量为1.2~27.4μg/dm3,100m以上水柱柱总生物量为189~1698mg/m2,平均为浮游植物柱总生物量的21%,其中粒径小于5,5~20μm和大于20μm的原生动物分别占其柱总生物量的13%,47%和40%;作为主要类群的异养腰鞭毛虫占原生动物柱总生物量的39%.浮游细菌和原生动物生物量的总体分布趋势从西部向东北和东部递减、从表层向深层衰减,20~25m水层温跃层和表层海流的存在对这一分布特性可能有较大的影响.原生动物受潜在的大、中型浮游动物捕食压力的制约,维持了一个相对较低的生物量水平,在一定程度上限制了微食物环(microbial food loop)在该海域夏季生态系统营养中的作用.
  • OBAYASHI Y, TANOUE E, SUZUKI K, et al. Spatial and temporal variabilities of phytoplankton community structure in the northern North Pacific as determined by phytoplankton pigments [J]. Deep-Sea Res, 2001, 48(2):439-469.
    SHIOMOTO A, TANAKA H, MURATA T, et al. Surface distribution and abundance of small-sized phytoplankton in the western and central subarctic North Pacific and the Bering Sea in winter [J]. Plank Biol Ecol, 2000, 47(2):129-133.
    ODATE T. Abundance and size composition of the summer phytoplankton communities in the Western North Pacific Ocean, the Bering Sea, and the Gulf of Alaska [J]. J Oceanogr, 1996, 52(3):335-351.
    SUGIMOTO T, TADOKORO K. Interannual-interdecadal variations in zooplankton biomass, chlorophyll concentration and physical environment in the subarctic Pacific and Bering Sea [J]. Fish Oceanogr, 1997,6(2):74-93.
    COYLE K O, WEINGARTNER T J, HUNT G L Jr. Distribution of acoustically determined biomass and major zooplankton taxa in the upper mixed layer relative to water masses in the western Aleutian Islands [J]. Mar Ecol Prog Ser, 1998, 165:95-108.
    DAGG M J, VIDAL J, WHITLEDGE T E, et al. The feeding, respiration, and excretion of zooplankton in the Bering Sea during a spring bloom [J]. Deep-Sea Res, 1982, 29(1A):45-63.
    STEWARD G F, SMITH D C, AZAM F. Abundance and production of bacteria and viruses in the Bering and Chukchi Seas [J]. Mar Ecol Prog Ser, 1996, 131:287-300.
    KOPYLOV A I, KOSOLAPOV D B, FLINT M V. Microplanktonic communities in the coastal waters, harbor, and salt lagoon of Saint Paul Island(Pribilof Islands, Bering Sea):structural and functional analysis [J]. Oceanol, 2001, 41(1):94-104.
    ANDERSON P. The quantitative importance of the microbial loop in the marine pelagic:a case study from the North Bering/Chukchi Seas [J]. Arch Hydrobiol, 1988, 31(2):243-251.
    OLSON M B, STROM S L. Phytoplankton growth, microzooplankton herivory and community structure in the southeast Bering Sea:insight into the formation and temporal persistence of an Emiliania huxleyi bloom [J]. Deep-Sea Res(Ⅱ), 2002, 49(6):5 969-5 990.
    VEHZINA A F, SAVENKOFF C. Inverse modeling of carbon and nitrogen flows in the pelagic food web of the northeast subarctic Pacific [J]. Deep-Sea ResⅡ, 1999, 46(11-12):2 909-2 939.
    HANSEN B, CHRISTIANSEN S, PEDERSEN G. Plankton dynamics in the marginal ice zone of the central Barents Sea during spring:carbon flow and structure of the grazer food chain [J]. Polar Biol, 1996, 16(2):115-128.
    NIELSEN T G, HANSEN B W. Plankton community structure and carbon cycling on the western coast of Greenland during and after the sedimentation of a diatom bloom [J]. Mar Ecol Prog Ser, 1995, 125:239-257.
    RYSGAARD S, NIELSEN T G, HANSEN B W. Seasonal variation in nutrients, pelagic primary production and grazing in a high-Arctic coastal marine ecosystem, Young Sound, Northeast Greenland [J]. Mar Ecol Prog Ser, 1999, 179:13-25.
    PORTER KG, FEIGYS. The use of DAPI for identifying and counting aquatic microflora [J]. LimnolOceanogr, 1980, 25(5):943-948.
    HOLM-HANSEN O, RIEMANN B. Chlorophyll-a determination:improvements in methodology [J]. Oikos, 1978, 30(3):438-447.
    SHERR B F, CARON E B, SHERR B F. Staining of heterotrophic protists for visualization via epifluorescence microscopy [A]. KEMP P F, et al. Handbook of methods in Aquatic Microbial Ecology [M]. Boca Raton, FL:Lewis Publishers, 1993. 213-228.
    HELCOM. Guidelines for the Baltic monitoring programme for the third stage:Part D. Biological determinands [M]. Helsiki:Finnish Governmental Printing Centre, 1989. 161.
    LEE S, FUHRMAN J A. Relationship between biovolumn and biomass of naturally derived marine bacterioplankton [J]. Appl Environ Microbiol, 1987, 53(6):1 298-1 303.
    LESSARD E J. The trophic role of heterotrophic dinoflagellates in diverse marine environments [J]. Mar Microb Food Webs, 1991,(5):49-58.
    BOOTH, B C, LEWIN J, POSTEL J R. Temporal variation in the structure of autotrophic and heterotrophic communities in the sub arctic Pacific [J]. Prog Oceanogr, 1993, 32(1):57-99.
    LEE C W, KUDO I, YANADA M, et al. Bacterial abundance and production and heterotrophic nanoflagellate abundance in subarctic coastal waters(Western North Pacific Ocean) [J]. Aquat Microb Ecol, 2001, 23(3):263-271.
    LIU H, SUZUKI K, SAINO T. Phytoplankton growth and microzooplankton grazing in the subarctic Pacific Ocean and the Bering Sea during summer 1999 [J]. Deep-Sea Res, 2002, 49(2):363-375.
    ANDERSON T R, DUCKLOW H W. Microbial loop carbon cycling in ocean environments studied using a simple steady-state model[J]. Aquat Microb Ecol, 2001, 26(1):37-49.
    CHO B C, AZAM F. Biogeochemical significance of bacterial biomass in the ocean's euphotic zone [J]. Mar Ecol Prog Ser, 1990, 63:253-259.
    KIRCHMAN D L, KEEL R G, SIMON M et al. Biomass and production of heterotrophic bacterioplankton in the oceanic subarctic Pacific [J]. Deep-Sea Res, 1993, 40(5):967-988.
    SHERR E B, SHERR B F, FESSENDEN L. Heterotrophic protists in the Central Arctic Ocean [J]. Deep-Sea Res, 1997, 44(8):1 665-1 682.
    KLASS C. Microprotozooplankton distribution and their potential grazing impact in the Antarctic Cirumpolar Current [J]. Deep-Sea Res Ⅱ, 1997, 44(1-2):375-393.
    SHERR B F, SHERR E B. Proportional distribution of total numbers, biovolumn, and bacterivory among size classes of 2~20 μm nonpigmented marine flagellates [J]. Mar Microb Food Webs, 1991,(5):227-237.
    STROM S. Grazing and growth rates of the herbivorious dinoflagellate Gymnodinium sp. from the open subarctic Pacific Ocean[J]. Mar Ecol Prog Ser, 1991, 78:103-113.
    JACOBSEN D M, ANDERSEN D M. Growth and grazing rates of Protoperidinium hirobis Abe, a thecate heterotrophic dinoflagellates [J]. J Plank Res, 1993, 15(7):723-736.
    BOYD P, HARRISON P J. Phytoplankton dynamics in the NE subarctic Pacific[J]. Deep-Sea Res, 1999, 46(11-12):2 405-2 432.
    BURY S J, BOYD P W, PRESTON T, et al. Size-fractionated primary production and nitrogen uptake during a North Atlantic phytoplankton bloom:implications for carbon export estimates [J]. Deep-Sea Res, 2001, 48(3):689-720.
    林景宏,戴燕玉,林茂,等.夏季白令海浮游动物分布[J].极地研究,2002,14(2):126-135.
    RIVKIN R B, PUTLAND J N, ANDERSON M R, et al. Microzooplankton bacterivory and herbivory in the NE subarctic Pacific[J].Deep-Sea Res, 1999, 46(11-12):2 579-2 618.
    COTA G F, POMEROY L R, HARRISON W G, et al. Nutrients, primary production and microbial heterotrophy in the southeastern Chukchi Sea:arctic summer nutrient depletion and heterotrophy [J]. Mar Ecol Prog Ser, 1996, 135:247-258.
    POMEROY L R, WIEBE W J. Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria [J]. Aquat Microb Ecol, 2001, 23(2):187-204.
    RIVKIN R B, ANDERSON M R, LAJZEROWICZ C. Microbial processes in cold oceans:Ⅰ. Relationship between temperature and bacterial growth rate [J]. Aquat Microb Ecol, 1996, 10(3):243-254.
    高郭平,侍茂崇,赵进平,等.1999年白令海夏季水文特征分析[J].海洋学报,2002,24(1):8-16.
    STABENO P J, REED R K. Circulation in the Bering Sea Basin observed by satellite-tracked drifters:1986~1993 [J]. J Phys Oceanogr, 1994, 24(4):848-854.
    KINDER T H, SCHUMACHER J D, HANSEN D V. Observations of a baroclinic eddy:an example of mesoscale variability in the Bering Sea [J]. J Phys Oceanogr, 1980, 10(8):1 228-1 245.
  • 加载中
计量
  • 文章访问数:  694
  • HTML全文浏览量:  17
  • PDF下载量:  1017
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-04-10
  • 修回日期:  2004-03-29

目录

    /

    返回文章
    返回