系泊船非线性波浪力时域计算: 二维模型
Time stepping solutions of nonlinear wave forces on moored ship in harbor
-
摘要: 为找到具有工程实用价值的港口系泊船波浪力的时域计算方法,建立了在港口中存在系泊船时非线性波浪力时域计算的垂直二维耦合模型:用Boussinesq方程计算船的两侧的外域,用欧拉方程计算船底面下的内域,两域在交界面处的连接条件是流量连续和压力相等.将复平面内的边界元方法应用于所研究问题,对耦合模型进行了验证.进行了相关模型实验,实验结果与数值计算结果比较表明这两种数值计算模型都具有满意的精度,但耦合模型的计算效率要远远高于边界元方法的计算效率.本耦合模型的数学处理简单,可适用于工程计算.
-
关键词:
- Boussinesq方程 /
- 欧拉方程 /
- 耦合模型 /
- 边界元方法
Abstract: A two-dimensional time-domain coupled numerical model is developed in order to obtain efficient method for nonlinear wave forces acted on moored ship in harbor.The fluid domain is divided into an inner domain and an outer domain.The inner domain is the area under the ship section, which is governed by Euler equations.The outer domain is the area outside the two sides of ship hull, which is governed by Boussinesq equations.Matching conditions on the interface boundaries between the inner domain and the outer domain are the continuation of volume flux and the equality of pressures.In addition, the boundary element method in complex is adopted to verify the coupled model.Relevant physical experiment is conducted to validate the two numerical models, and it is shown that the numerical results agree with experimental results, but the computational efficiency of the boundary element method is much lower than that of the coupled model.In addition, the numerical computations of the coupled model are simple, which can be used to compute the nonlinear wave forces acted on moored ship in harbor.-
Key words:
- Boussinesq equations /
- Euler equations /
- coupled model /
- boundary element method
-
李玉成.不规则波作用下的船舶撞击作用[J].海洋学报,1980,3(2):363-370. 杨宪章.不同浪向的不规则波作用下系泊船舶动态特性的差异[J].港口工程,1992,(2):1-11. WU Guo-xiong, TAYLOR Eatoek R. Time stepping solutions of the two-dimensional nonlinear wave radiation problem[J].Ocean Engng, 1995, 22: 785-798. CLEMENT A. Coupling of two absorbing boundary conditions of 2-D time domain simulations of free surface gravity waves[J]. Journal of Computational Physics, 1996, 126.. 139-151. PARK J C, KIM M H. Fully nonlinear wave-current-body interaction by a 3-D viscous numerical wave tank[A]. Proceedings of the Eighth International Offshore and Polar Engineering Conference[C]. Montreal, Canada, 1998. 264-271. 万德成,缪国平.数值模拟波浪翻越直立方柱[J].水动力学研究与进展,1998,13(3):363-370. 林建国.浮体在浅水中运动产生的孤立波[J].水动力学研究与进展,1998,13(2):167-173. MADSEN P A. Extension of the Boussinesq equations to include wave propagation in deeper water and wave ship interaction in shallow water[A]. Int Conf on Coastal Engineering (ICCE)[C]. Delft, The Netherlands, 1990. 3 112-3 125. QI Peng, WANG Yong-xue, ZOU Zhi-li. 2-D composite model for numerical simulations of nonlinear waves[J]. China Ocean Engineering, 2000, 14(1): 113-120. 齐鹏,王永学,邹志利,等.非线性波浪时域计算的三维耦合模型[J].海洋学报,2000,22(6):102-109. LIN W M, NEWMAN J N, YUE D K. Nonlinear forced motion of floating bodies[A]. Proc 15th Symp on Naval Hydrodynamics[C]. Hamburg, Germany, 1984. 33-47. 邹志利.适合复杂地形的高阶Boussinesq水波方程[J].海洋学报,2001,23(1):116-223. ZOU Zhi-li, XU Ben-he. Numerical model for solving Boussinesq-type equations: comparison and validation[J]. Acta Oceanologiea Siniea, 1998, 17(3): 375-386. ZOU Zhi-li. Higher-order Boussinesq equations[J]. Ocean Engineering, 1999, 26: 767-79.
计量
- 文章访问数: 715
- HTML全文浏览量: 6
- PDF下载量: 1110
- 被引次数: 0