留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一般曲线坐标系下波浪传播的数值模拟

张洪生 丁平兴 赵海虹

张洪生, 丁平兴, 赵海虹. 一般曲线坐标系下波浪传播的数值模拟[J]. 海洋学报, 2003, 25(1): 110-119.
引用本文: 张洪生, 丁平兴, 赵海虹. 一般曲线坐标系下波浪传播的数值模拟[J]. 海洋学报, 2003, 25(1): 110-119.
ZHANG Hong-sheng, DING Ping-xing, ZHAO Hai-hong. Numerical simulation model of wave propagation in curvilinear coordinates[J]. Haiyang Xuebao, 2003, 25(1): 110-119.
Citation: ZHANG Hong-sheng, DING Ping-xing, ZHAO Hai-hong. Numerical simulation model of wave propagation in curvilinear coordinates[J]. Haiyang Xuebao, 2003, 25(1): 110-119.

一般曲线坐标系下波浪传播的数值模拟

基金项目: 国家自然科学基金资助项目(40106008)

Numerical simulation model of wave propagation in curvilinear coordinates

  • 摘要: 在曲线坐标系下,建立了缓变水深水域波浪传播的数值模拟模型.模型适宜于复杂变化的边界形状,克服了各种代数坐标变换的局限性.在建立模型时,将原始的椭圆型缓坡方程的近似型式——依赖时间变化的抛物型方程,作为控制方程,既克服了一般抛物近似方法的缺点,又便利了方程的求解;从开边界条件、不同反射特性的固壁边界条件相统一的表达式出发,对边界条件进行处理;用ADI法数值求解控制方程.对模型的验证表明,数值解与物模实验值吻合良好,模型对于具有复杂边界的工程实际有较强的适应性.
  • BERKHOFF J C W. Computation of combined refraction-diffraction[A]. Proc 13th Conference on Coastal Engineering[C], Vol. 1. Vancouver, Canada:ASCE, 1972.471-490.
    PANCHANG V G, PEARCE B R. Solution of the mild-slope wave problem by iteration[J]. Applied Ocean Research,1991, 13(4):187-199.
    BERKHOFF J C W, BOOIJ N, RADDER A C. Verification of numerical wave propagation models for simple harmonic water waves[J]. Coastal Engineering, 1982, 6:255-279.
    PANCHANG V G, CHSHMAN-ROISIN B, PEARCE B R. Combined refraction-diffraction of short-waves in large coastal regions[J]. Coastal Engineering, 1988, 12:133-156.
    RADDER A C. On the parabolic equation method for water-wave propagation[J]. Journal of Fluid Mechanics, 1979, 95:159-176.
    LI Bin. ANASTASIOU K. Efficient elliptic solvers for the mild slope equation using the multigrid technique[J]. Coastal Engineering, 1992, 16:245-266.
    LI Bin. An evolution equation for water waves[J]. Coastal Engineering, 1994,23:227-242.
    陶建华,韩光,龙文.浅水区大面积波浪场数值计算方法的研究[A].第九界全国海岸工程学术讨论会论文集[C]北京:海洋出版社,1999.17-24.
    COPELAND G J M. A practical alternative to the "mild-slope" wave equation[J]. Coastal Engineering, 1985, 9:125-149.
    EBERSOLE B A. Refraction-diffraction model for linear water waves[J]. Journal of Waterway, Port, Coastal and Ocean Enginnering, 1985, 111(6):939-953.
    张洪生.近岸水域波浪传播的数学模型[R].上海:华东师范大学,2002.
    洪广文,冯卫兵,夏期颐,等.缓变水深和流场水域波浪折射、绕射数值模拟[A].第八届全国海岸工程学术讨论会论文集(下)[C].北京:海洋出版社,1997.703-714.
    洪广文,冯卫兵,张洪生.海岸河口水域波浪传播数值模拟[J].河海大学学报,1999,27(2):1-9.
    LIUPLF, BOLSSEVAINPL. Wave propagation between two breakwaters[J]. Journal of Waterway, Port, Coastaland Ocean Engineering, 1988, 114(2):237-247.
    XU Bing-yi, PANCHANG V, DEMIRBILEK Z. Exterior reflections in elliptic harbor wave models[J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 1996, 122(3):118-126.
    KIRBY J T, DALRYMPLE R A, KABU H. Parabolic approximation for water waves in conformal coordinate systems[J].Coastal Engineering, 1994, 23:185-213.
    ZHANG Hong-sheng, HONG Guang-wen, DING Ping-xing. Numerical simulation of nonlinear wave propagation in water of mildly varying topography with complicated boundary[J]. China Ocean Engineering, 2001, 15(1):37-52.
    HONG Gnang-wen. Mathematical models for combined refraction-diffraction of waves on non-uniform current and depth[J]. China Ocean Engineering, 1996, 10(4):433-454.
    PAN Jun-ning, ZUO Qi-hua, WANG Hong-chuan. Efficient numerical solution of the modified mild-slope equation[J].China Ocean Engineering, 2000, 14(2):161-174.
    BRACKBILL J U, SALTZMAN J S. Adaptive zoning for singular problems in two dimensions[J]. Journal of Computation Physics, 1982,46:342-368.
    曾平.适应性坐标变换在天然河道平面计算中的应用[J].水动力研究与进展(A辑),1991,6(增刊):100-107.
    史峰岩,孔亚珍,丁平兴潮滩海域边界适应网格潮流数值模型[J]海洋工程,1998,16(3):68-75.
    刘卓,曾庆存.自适应网格在大气海洋问题中的初步应用[J].大气科学,1994,18(6):641-648
    张洪生.有限水深非线性船行波的数值模拟[D].南京:河海大学,1991.
    张洪生.非线性波传播的数值模拟[D].南京:河海大学,2000
    HONG Guang-wen, ZHANG Hong-sheng, FENG Wei-bing. Numerical simulation of nonlinear three-dimensional waves in water of arbitrary varying topngraphy[J]. China Ocean Engineering, 1998, 12(4):383-404.
    ISOBE M. A parabolic refraction-diffraction equation in the ray-front coordinate system[A]. Proceedings 20th International Coastal Engineering Conference, Taipei:ASCE, 1986.306-317.
    MEMOS C D. Water waves diffracted by two breakwaters[J]. Journal of Hydraulic Research, 1980, 18(4):343-357.
  • 加载中
计量
  • 文章访问数:  824
  • HTML全文浏览量:  5
  • PDF下载量:  1097
  • 被引次数: 0
出版历程
  • 收稿日期:  2002-05-31
  • 修回日期:  2002-07-08

目录

    /

    返回文章
    返回