椭圆型缓坡方程的一个有效的有限元解
An efficient finite element solver for the elliptic mild-slope equation
-
摘要: 将海绵层消波的方法用于有限元方法中,提出了缓坡方程的一种有效的有限元求解方法.在应用有限元法求解椭圆型缓坡方程时,通过在方程中加摩阻项,并在入射边界(波浪由此边界进入计算域)处使用不连续单元,将绕射势从总势中分离出来,在边界上利用海绵层进行消波处理,有效地消除了由于引用放射边界条件引起的误差和数值反射现象.Abstract: An efficient finite element method for solving mild-slope equation is proposed.When solving the mild-slope equation,a spongy layer is used.The diffraction potential is subtracted from the total velocity potential at the incident boundary by using discontinuous elements.The error and numerical reflection due to using radiation boundary condition are reduced efficiently because the po tential function is damped at the spongy layer through adding a friction parameter into the mild-slope eqauation.
-
Key words:
- finite element method /
- wave /
- numerical solution
-
BERKHOFF J C W. Computation of combined refraction diffraction [A]. Proc 13th International Conference on Coastal Engineering [C]. Vancouver:ASCE, 1972. 471~490. COPELAND G J M. A practical alternative to the "mild-slope"wave equation [J]. Coastal Engineering, 1985, 9:125~149. VAN DER VORST H A. BI-CGSTAB:a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric lin ear system [J]. SIAM J Sci Stat Comput, 1992, 13(2):631~644. ZHENG Yong-hong. Efficient elliptic solver for the mild slope equation using BI-CGSTAB method[J]. China Ocean Engineering, 2000, 14(2):175~184. BEHRENDT L, JONSSON I G. The physical basis of mild-slope equation [A]. Proc 19th International Conference on Coastal Engineering [C]. Houston:ASCE, 1984. 941~954. 赵明,滕斌,金生缓坡方程的有限元解[J]大连理工大学学报,2000,40(1):117~119 MADSEN P A, LARSEN J. An efficient finite difference approach to the mild-slope equation[J]. Coastal Engineering,1987, 11:329~351. ITO T, TANIMOTO K. A method of numerical analysis of wave propagation application to wave diffraction and refraction [A]. Proc 13th International Conference on Coastal Engineering [C]. Vancouver:ASCE, 1972. 503~522. BERKHOFF J C W, BOOJI N, RADDER A C. Verification of numerical wave propagation models for simple harmonic water waves [J]. Coastal Engineering, 1982, 6:255~279. ZHAO Y, ANASTASIOU K. Modelling of wave propagation in the nearshore region using the mild-slope equation with GMRES-based iterative solvers [J]. Int J Numer Methods Fluids, 1996, 23:397~411.
计量
- 文章访问数: 912
- HTML全文浏览量: 19
- PDF下载量: 1063
- 被引次数: 0