留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弱非线性斯托克斯波在非平整海底上传播的新型抛物型方程

黄虎 周锡礽 吕秀红

黄虎, 周锡礽, 吕秀红. 弱非线性斯托克斯波在非平整海底上传播的新型抛物型方程[J]. 海洋学报, 2000, 22(4): 101-106.
引用本文: 黄虎, 周锡礽, 吕秀红. 弱非线性斯托克斯波在非平整海底上传播的新型抛物型方程[J]. 海洋学报, 2000, 22(4): 101-106.
Huang Hu, Zhou Xireng, Lü Xiuhong. A new parabolic equation for propagation of weakly nonlinear Stokes waves over uneven bottom[J]. Haiyang Xuebao, 2000, 22(4): 101-106.
Citation: Huang Hu, Zhou Xireng, Lü Xiuhong. A new parabolic equation for propagation of weakly nonlinear Stokes waves over uneven bottom[J]. Haiyang Xuebao, 2000, 22(4): 101-106.

弱非线性斯托克斯波在非平整海底上传播的新型抛物型方程

基金项目: 国家教委博士点基金9405623;国家高性能计算基金96103

A new parabolic equation for propagation of weakly nonlinear Stokes waves over uneven bottom

  • 摘要: 由于缓坡方程计算量大和其本身的缓坡假定而在实际应用中受到了限制,故对斯托克斯波在非平整海底(适用于缓坡和陡坡地形)上传播的Liu和Dingemans的三阶演化方程进行抛物逼近,得到一个新的非线性抛物型方程,它能够包含同类方程未曾考虑的二阶长波效应.通过数值计算结果与Berkhoff等人的经典实验数据的比较,证明所提出的抛物型模型理论具有较高的精度.
  • Liu P L-F, Mei C C. Water motion on a beach in the presence of a breakwater 1. Waves. J Geophys Res, 1976, 81:3 079~3 084
    Berkhoff J C W. Computation of combined refraction-diffraction. Proc 13th Int Conf Coastal Eng. Vancouver:ASCE, 1972. 471~490
    Radder A C. On the parabolic equation method for water-wave propagation. J Fluid Mech, 1979, 95:159~176
    Kirby J T, Dalrymple R A. A parabolic equation for the combined refraction-diffraction of Stokes waves by mildly varying to pography. J Fluid Mech, 1983, 136:453~466
    Liu P L-F, Tsay T-K. Refraction-diffraction model for weakly nonlinear water waves. J Fluid Mech, 1984, 141:265~274
    Dalrymple R A, Kirby J T. Models for very wide-angle water waves and wave diffraction. J Fluid Mech, 1988, 192:33~50.
    林刚,邱大洪.新抛物型缓底坡波动方程.水利学报,1999,(3):59~63
    陶建华,韩光,龙文.浅水区大面积波浪场数值计算方法的研究.第九届全国海岸工程学术讨论会北京:海洋出版社,1999.17~24
    Kirby J T. A general wave equation for waves over rippled beds. J Fluid Mech, 1986, 162:171~186
    Liu P L-F, Dingemans M W. Derivation of the third-order evolution equatons for weakly nonlinear water propagating over uneven bottoms. Wave Motion, 1989, 11:41~64
    Chandrasekera C N, Cheung K F. Extended linear refraction-diffraction model. J Wtrwy, Port, Coast, and Oc Engr, 1997, 123(5):280~286
    Mei C C, Benmousa C. Long waves induced by short wave groups over an uneven bottom. J Fluid Mech, 1984, 139:219~350
    Wu J K, Liu P L-F. Harbor excitations by incident wave groups. J Fluid Mech, 1990, 217:595~613
    Roelvink J K, Stive MJ F. Bar-generating cross-shore flow mechanism on a beach. J Geophys Res, 1989, 94:4 785~4 800
    Berkhoff J C W, Booij N, Radder A C. Verification of numerical wave propagation models for simple harmonic linear waves.Coastal Eng, 1982, 6:255~279
  • 加载中
计量
  • 文章访问数:  743
  • HTML全文浏览量:  8
  • PDF下载量:  569
  • 被引次数: 0
出版历程
  • 收稿日期:  1998-08-07
  • 修回日期:  2000-01-03

目录

    /

    返回文章
    返回