留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多尺度分析的四叉树星载激光雷达去噪方法

张百川 董志鹏 刘焱雄 阳凡林 陈义兰 李杰

张百川,董志鹏,刘焱雄,等. 基于多尺度分析的四叉树星载激光雷达去噪方法[J]. 海洋学报,2025,47(x):1–14
引用本文: 张百川,董志鹏,刘焱雄,等. 基于多尺度分析的四叉树星载激光雷达去噪方法[J]. 海洋学报,2025,47(x):1–14
Zhang Baichuan,Dong Zhipeng,Liu Yanxiong, et al. Multiscale Quadtree for Denoising Spaceborne Photon-counting LiDAR[J]. Haiyang Xuebao,2025, 47(x):1–14
Citation: Zhang Baichuan,Dong Zhipeng,Liu Yanxiong, et al. Multiscale Quadtree for Denoising Spaceborne Photon-counting LiDAR[J]. Haiyang Xuebao,2025, 47(x):1–14

基于多尺度分析的四叉树星载激光雷达去噪方法

基金项目: 国家自然科学基金(42404056);山东省海洋生态环境与防灾减灾重点实验室开放基金(202304);山东省自然科学基金(ZR2023QD113);青岛市自然科学基金(23-2-1-73-zyyd-jch);海洋测绘重点实验室开放基金(2024B01)。
详细信息
    作者简介:

    张百川(1998—),男,博士生,研究方向为海洋测绘

    通讯作者:

    董志鹏(1991—)男,副研究员,研究方向为海洋测绘。E-mail:zhipengdong@foxmail.com

  • 中图分类号: P237

Multiscale Quadtree for Denoising Spaceborne Photon-counting LiDAR

  • 摘要: 第二代星载激光雷达冰、云和陆地测高卫星(Ice, Cloud, and Land Elevation Satellite-2, ICESat-2)在获取浅海岛礁水深信息方面具有极大潜力。然而受大气散射、太阳辐射和仪器噪声等因素影响,造成获取的ICESat-2星载激光光子中存在大量噪声。针对上述问题,本文提出一种基于多尺度分析的四叉树星载激光雷达去噪方法。首先,使用高斯核函数和K折交叉验证的方法绘制光子核密度曲线(Kernel Density Estimation, KDE),并设置阈值来分离海面光子和海底光子;其次,利用自适应参数的DBSCAN(Density-Based Spatial Clustering of Applications with Noise)算法去除海底异常光子,获得粗略去噪结果。最后,对海底光子划分窗口,从不同尺度使用预判断四叉树算法提取出精确的海底信号光子。研究选取典型岛礁的ICESat-2卫星数据,通过与实测水深数据对比,决定系数(R2)分别达到95 %和98 %,均方根误差(RMSE)分别达到1.01 m和0.77 m。结果表明,该方法能够准确提取水下地形信息,为浅海水下地形反演奠定基础。
  • 图  1  研究算法流程图

    Fig.  1  Flowchart of the research algorithm.

    图  2  海面光子提取过程

    Fig.  2  Process of sea surface photons extraction.

    图  3  最优Eps值示意图

    Fig.  3  Schematic Diagram of the Optimal Eps Value.

    图  4  窗口分割示意图

    Fig.  4  Window segmentation diagram.

    图  5  四叉树算法树状图

    Fig.  5  Quadtree structure diagram.

    图  6  研究区域

    Fig.  6  Study Area.

    图  7  不同光子密度的去噪结果(蓝色点代表海面光子,红色点代表海底光子,灰色点代表噪声光子)

    Fig.  7  Denoising results of different photon densities. (Blue points represent sea surface photons, red points represent seafloor photons, and gray points represent noise photons.)

    图  8  不同海底地形的去噪结果(蓝色点代表海面光子,红色点代表海底光子,灰色点代表噪声光子)

    Fig.  8  Denoising results of different seafloor terrains. (Blue points represent sea surface photons, red points represent seafloor photons, and gray points represent noise photons.)

    图  9  东岛水深相关性分析

    Fig.  9  Depth correlation analysis of Dong Island.

    图  10  瓦胡岛水深相关性分析

    Fig.  10  Depth correlation analysis of Oahu Island.

    图  11  不同水深下的总体准确率

    Fig.  11  OA at different water depths.

    图  12  不同水深下的F1值

    Fig.  12  F1 scores at different water depths.

    图  13  不同水深下的FPR值

    Fig.  13  FPR at different water depths.

    表  1  实验区域

    Tab.  1  Experimental area

    序号研究区域采集时间航迹波束范围
    (a)东岛2023-08-07 19:59:020743GT3L16°39′54″N~16°41′07″N
    (b)华光礁2022-07-15 14:36:120362GT1R16°13′33″N~16°14′37″N
    (c)蜈支洲岛2022-06-28 03:40:530095GT3R18°18′52″N~18°19′01″N
    (d)别克斯岛2020-07-17 13:08:310339GT1L18°07′26″N~18°07′48″N
    (e)瓦胡岛2022-09-02 06:13:301105GT3R21°17′08″N~21°18′04″N
    (f)埃林吉纳埃环礁2022-09-08 08:22:271198GT2R11°07′12″N~11°08′06″N
    下载: 导出CSV

    表  2  精度评价结果(东岛、蜈支洲岛和别克斯岛)

    Tab.  2  Accuracy verification results (Dong Island, Wuzhizhou Island, and Vieques Island)

    实验区域指标实验方法
    ATL03DBSCANQuadtree本文方法
    东岛OA/%94.794.594.197.8
    F1/%97.297.196.998.9
    FPR/%48.348.334.723.1
    蜈支洲岛OA/%94.196.093.798.5
    F1/%85.391.986.996.9
    FPR/%0.24.85.71.8
    别克斯岛OA/%83.693.493.195.3
    F1/%80.092.992.595.4
    FPR/%0.01.70.68.3
    下载: 导出CSV

    表  3  精度评价结果(华光礁、瓦胡岛和埃林吉纳埃环礁)

    Tab.  3  Accuracy verification results (Huaguang Reef, Oahu Island, and Ailinginae Atoll)

    实验区域指标实验方法
    ATL03DBSCANQuadtree本文方法
    华光礁OA/%95.195.896.399.3
    F1/%97.497.898.099.6
    FPR/%73.945.817.52.6
    瓦胡岛OA/%96.294.596.897.7
    F1/%98.097.198.398.8
    FPR/%79.841.925.815.7
    埃林吉纳埃环礁OA/%97.998.498.598.7
    F1/%98.999.299.399.4
    FPR/%55.328.213.61.0
    下载: 导出CSV

    表  4  不同算法的去噪精度比较

    Tab.  4  Comparison of denoising accuracy of different algorithms

    研究区域方法指标
    R²/%RMSE/mMAE/mMRE/%点数量
    东岛DBSCAN算法89.01.030.777.53627
    Quadtree算法75.01.350.807.88618
    本文方法95.01.010.777.26696
    瓦胡岛DBSCAN算法97.00.990.7615.64477
    Quadtree算法96.01.280.8516.87486
    本文方法98.00.910.6910.72596
    下载: 导出CSV
  • [1] 杨元喜, 徐天河, 薛树强. 我国海洋大地测量基准与海洋导航技术研究进展与展望[J]. 测绘学报, 2017, 46(1): 1−8. doi: 10.11947/j.AGCS.2017.20160519

    Yang Yuanxi, Xu Tianhe, Xue Shuqiang. Progresses and prospects in developing marine geodetic datum and marine navigation of China[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(1): 1−8. doi: 10.11947/j.AGCS.2017.20160519
    [2] 马毅, 张杰, 张靖宇, 等. 浅海水深光学遥感研究进展[J]. 海洋科学进展, 2018, 36(3): 331−351. doi: 10.3969/j.issn.1671-6647.2018.03.001

    Ma Yi, Zhang Jie, Zhang Jingyu, et al. Progress in shallow water depth mapping from optical remote sensing[J]. Advances in Marine Science, 2018, 36(3): 331−351. doi: 10.3969/j.issn.1671-6647.2018.03.001
    [3] Hodúl M, Bird S, Knudby A, et al. Satellite derived photogrammetric bathymetry[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 142: 268−277. doi: 10.1016/j.isprsjprs.2018.06.015
    [4] Albright A, Glennie C. Nearshore bathymetry from fusion of Sentinel-2 and ICESat-2 observations[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(5): 900−904. doi: 10.1109/LGRS.2020.2987778
    [5] Caballero I, Stumpf R P. Retrieval of nearshore bathymetry from Sentinel-2A and 2B satellites in South Florida coastal waters[J]. Estuarine, Coastal and Shelf Science, 2019, 226: 106277. doi: 10.1016/j.ecss.2019.106277
    [6] Ranndal H, Sigaard Christiansen P, Kliving P, et al. Evaluation of a statistical approach for extracting shallow water bathymetry signals from ICESat-2 ATL03 photon data[J]. Remote Sensing, 2021, 13(17): 3548. doi: 10.3390/rs13173548
    [7] Parrish C E, Magruder L A, Neuenschwander A L, et al. Validation of ICESat-2 ATLAS bathymetry and analysis of ATLAS’s bathymetric mapping performance[J]. Remote sensing, 2019, 11(14): 1634. doi: 10.3390/rs11141634
    [8] 朱笑笑, 王成, 习晓环, 等. ICESat-2星载光子计数激光雷达数据处理与应用研究进展[J]. 红外与激光工程, 2020, 49(11): 20200259. doi: 10.3788/IRLA20200259

    Zhu Xiaoxiao, Wang Cheng, Xi Xiaohuan, et al. Research progress of ICESat-2/ATLAS data processing and applications[J]. Infrared and Laser Engineering, 2020, 49(11): 20200259. doi: 10.3788/IRLA20200259
    [9] 方勇, 曹彬才, 高力, 等. 激光雷达测绘卫星发展及应用[J]. 红外与激光工程, 2020, 49(11): 20201044. doi: 10.3788/IRLA20201044

    Fang Yong, Cao Bincai, Gao Li, et al. Development and application of lidar mapping satellite[J]. Infrared and Laser Engineering, 2020, 49(11): 20201044. doi: 10.3788/IRLA20201044
    [10] 焦慧慧, 谢俊峰, 刘仁, 等. 星载对地观测光子计数激光雷达去噪方法浅析[J]. 航天返回与遥感, 2021, 42(5): 140−150. doi: 10.3969/j.issn.1009-8518.2021.05.015

    Jiao Huihui, Xie Junfeng, Liu Ren, et al. Discussion on denoising method of photon counting LiDAR for satellite ground observation[J]. Spacecraft Recovery & Remote Sensing, 2021, 42(5): 140−150. doi: 10.3969/j.issn.1009-8518.2021.05.015
    [11] . Magruder L A, Wharton M E, Stout K D, et al. Noise filtering techniques for photon-counting ladar data[C]//Proceedings of SPIE the International Society for Optical Engineering. Baltimore: SPIE, 2012: 237−245.
    [12] Herzfeld U C, McDonald B W, Wallin B F, et al. Algorithm for detection of ground and canopy cover in micropulse photon-counting lidar altimeter data in preparation for the ICESat-2 mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(4): 2109−2125.
    [13] Xie Huan, Xu Qi, Ye Dan, et al. A comparison and review of surface detection methods using MBL, MABEL, and ICESat-2 photon-counting laser altimetry data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 7604−7623.
    [14] Xie Huan, Ye Dan, Xu Qi, et al. A density-based adaptive ground and canopy detecting method for ICESat-2 photon-counting data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4411813.
    [15] . Zhang Jiashu, Kerekes J, Csatho B, et al. A clustering approach for detection of ground in micropulse photon-counting LiDAR altimeter data[C]//Proceedings of 2014 IEEE Geoscience and Remote Sensing Symposium. Quebec City: IEEE, 2014: 177−180.
    [16] 谢锋, 杨贵, 舒嵘, 等. 方向自适应的光子计数激光雷达滤波方法[J]. 红外与毫米波学报, 2017, 36(1): 107−113. doi: 10.11972/j.issn.1001-9014.2017.01.019

    Xie Feng, Yang Gui, Shu Rong, et al. An adaptive directional filter for photon counting Lidar point cloud data[J]. Journal of Infrared and Millimeter Waves, 2017, 36(1): 107−113. doi: 10.11972/j.issn.1001-9014.2017.01.019
    [17] Chen Bowei, Pang Yong, Li Zengyuan, et al. Ground and top of canopy extraction from photon-counting LiDAR data using local outlier factor with ellipse searching area[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(9): 1447−1451. doi: 10.1109/LGRS.2019.2899011
    [18] Ma Yue, Xu Nan, Sun Jinyan, et al. Estimating water levels and volumes of lakes dated back to the 1980s using Landsat imagery and photon-counting lidar datasets[J]. Remote Sensing of Environment, 2019, 232: 111287. doi: 10.1016/j.rse.2019.111287
    [19] Ma Yue, Zhang Wenhao, Sun Jinyan, et al. Photon-counting lidar: an adaptive signal detection method for different land cover types in coastal areas[J]. Remote Sensing, 2019, 11(4): 471. doi: 10.3390/rs11040471
    [20] Zhu Xiaoxiao, Nie Sheng, Wang Cheng, et al. A noise removal algorithm based on OPTICS for photon-counting LiDAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(8): 1471−1475. doi: 10.1109/LGRS.2020.3003191
    [21] Zhang Guoping, Xu Qing, Xing Shuai, et al. A noise-removal algorithm without input parameters based on quadtree isolation for photon-counting LiDAR[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 6501905.
    [22] Huang Guoan, Dong Zhipeng, Liu Yanxiong, et al. An optimized denoising method for ICESat-2 photon-counting data considering heterogeneous density and weak connectivity[J]. Optics Express, 2023, 31(25): 41496−41517. doi: 10.1364/OE.502934
    [23] Song Yue, Ma Yue, Zhou Zhibiao, et al. Signal photon extraction and classification for ICESat-2 photon-counting lidar in coastal areas[J]. Remote Sensing, 2024, 16(7): 1127. doi: 10.3390/rs16071127
    [24] Xie Huan, Xu Qi, Luan Kuifeng, et al. Evaluating ICESat-2 seafloor photons by underwater light-beam propagation and noise modeling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4203018.
    [25] . Davis R A, Lii K S, Politis D N. Remarks on some nonparametric estimates of a density function[M]//Davis R A, Lii K S, Politis D N. Selected Works of Murray Rosenblatt. New York: Springer, 2011: 95−100.
    [26] Parzen E. On estimation of a probability density function and mode[J]. The Annals of Mathematical Statistics, 1962, 33(3): 1065−1076. doi: 10.1214/aoms/1177704472
    [27] . Ester M, Kriegel H P, Sander J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. Portland: AAAI Press, 1996: 226−231.
    [28] Finkel R A, Bentley J L. Quad trees a data structure for retrieval on composite keys[J]. Acta Informatica, 1974, 4(1): 1−9. doi: 10.1007/BF00288933
    [29] Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62−66. doi: 10.1109/TSMC.1979.4310076
    [30] Zheng Xuebo, Hou Chunping, Huang Meiyan, et al. A density and distance-based method for ICESat-2 photon-counting data denoising[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 6500405.
    [31] Egbert G D, Erofeeva S Y. Efficient inverse modeling of barotropic ocean tides[J]. Journal of Atmospheric and Oceanic technology, 2002, 19(2): 183−204. doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
    [32] Bargaoui Z K, Chebbi A. Comparison of two kriging interpolation methods applied to spatiotemporal rainfall[J]. Journal of Hydrology, 2009, 365(1/2): 56−73.
    [33] . Parrish C E, Magruder L A, Neuenschwander A L, et al. Validation of ICESat-2 ATLAS bathymetry and analysis of ATLAS’s bathymetric mapping performance[J]. Remote sensing, 2019, 11(14): 1634. (查阅网上资料, 该文献与第7条文献重复, 请确认)
    [34] 孟文君, 李杰, 张凯, 等. 基于改进DBSCAN算法的ICESat-2海面点数据去噪处理及精度评估[J]. 海洋通报, 2021, 40(6): 675−682. doi: 10.11840/j.issn.1001-6392.2021.06.008

    Meng Wenjun, Li Jie, Zhang Kai, et al. De-noising and accuracy evaluation of ICESAT-2 sea surface data based on DBSCAN algorithm[J]. Marine Science Bulletin, 2021, 40(6): 675−682. doi: 10.11840/j.issn.1001-6392.2021.06.008
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  5
  • HTML全文浏览量:  2
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-21
  • 修回日期:  2025-02-21
  • 网络出版日期:  2025-04-14

目录

    /

    返回文章
    返回