台风的定常运动和螺旋斑图
The steady motion and spiral patterns in typhoon
-
摘要: 应用控制台风的大气运动方程组求得了台风的三维定常流场以及相应的气压场和温度场,其中的三维流场构成了物理空间的一个非线性自治动力系统。研究指出:根据台风运动的定常解,台风的下层中心是低气压且是正垂直涡度(气旋式涡度)和水平辐合,上层中心是高气压(反气旋式涡度)和水平辐散;根据台风自治动力系统所获得的两个鞍一焦点很好地说明了台风的螺旋斑图,下层空气螺旋向内,引起台风中心附近的上升运动,上层空气螺旋向外引起台风外围的下沉运动,这些都与实际台风结构相似,文中阐明,地球的旋转和大气粘性对台风的螺旋结构是至关重要的。Abstract: Starting from the equations describing typhoons in the atmosphere the steady three-dimensional stream field and the corresponding pressure and temperature fields are obtained. The three-dimensional velocity fields construct a nonlinear autonomous system in the physical space. It is shown that the centre of typhoon is a local minimum pressure with positive vertical vorticity (cyclonic vorticity) and horizontal convergence in lower levels and a local maximum pressure with negative vertical vorticity (anticy-clonic vorticity) and horizontal divergence in upper levels. Because there exist two saddle-focus points in the autonomous system so there exist the spiral patterns in which the winds blow spirally inside and outside the centre in lower and upper loveis in the Northern Hemisphere and cause the ascending motion near the the rotation of the earth and viscosity of air play an centre. These are in conform fairly well with the observations. It implies that important role in the spiral structure of typhoons.
-
Key words:
- Typhoon /
- steady motion /
- spiral pattern
-
Anthes R A. Diagnostic studies of spiral mainbands in a nonlinear harricane model. 1. Atmos. Sci.,1976, 33, 959-975 巢纪平,叶笃正.正压大气中的螺旋行星波.大气科学,1977, 35(2):81-89 刘式适,杨大升.台风的螺旋结构.气象学报,1980, 38(3):193-204 Burgers J M. Application of a model system to illustrate some points of the statistical theory of free turbulence. Proc. Acad.Sci. Amstertam, 1940, 43, 2-12 Burgers J M. A mathematical model illustrating the theory of turbulence. In:Advances in Applied Mechanics. Beijing:Science Press, 1948, 197-199 Sullivan R D. A two-cell vortex solution of the Navier-Stokes equations. J. Asro/Space Sci.,1959, 26, 767-768 Veronis G. Cellular convection with finite amplitude in a rotating fluid. J. Fluid Mech.,1959, 5, 401-435 Chandrasekhar S. Hydrodynamic and hydromagnetic stability. Dover Publications, INC, 1981
计量
- 文章访问数: 899
- HTML全文浏览量: 11
- PDF下载量: 855
- 被引次数: 0