留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单纯形投影算子理论及在资料分析中的应用 Ⅰ.在方程模型资料预测中的应用

魏恩泊 许金山 郭建国 田纪伟

魏恩泊, 许金山, 郭建国, 田纪伟. 单纯形投影算子理论及在资料分析中的应用 Ⅰ.在方程模型资料预测中的应用[J]. 海洋学报, 1999, 21(2): 34-39.
引用本文: 魏恩泊, 许金山, 郭建国, 田纪伟. 单纯形投影算子理论及在资料分析中的应用 Ⅰ.在方程模型资料预测中的应用[J]. 海洋学报, 1999, 21(2): 34-39.
Wei Enbo, Xu Jinshan, Gao Jianguo, Tian Jiwei. Theory of simplex projection operator and its application to analyze data Ⅰ. Application to forecast equation model data[J]. Haiyang Xuebao, 1999, 21(2): 34-39.
Citation: Wei Enbo, Xu Jinshan, Gao Jianguo, Tian Jiwei. Theory of simplex projection operator and its application to analyze data Ⅰ. Application to forecast equation model data[J]. Haiyang Xuebao, 1999, 21(2): 34-39.

单纯形投影算子理论及在资料分析中的应用 Ⅰ.在方程模型资料预测中的应用

基金项目: 国家自然科学基金资助项目(编号:49476254);国家教委跨世纪优秀人才培养计划基金资助项目

Theory of simplex projection operator and its application to analyze data Ⅰ. Application to forecast equation model data

  • 摘要: 本文根据混沌系统奇怪吸引子在相空间中的伸缩和折叠的几何特征,建立了单纯形投影算子(simplex projection operator)预测方法.该方法主要侧重考虑了被预测点的局部非线性特征及Lyapunov特征指数,避免了传统预测函数和方程的模拟问题,减少了模拟参量.对Lorenz方程和Logistic映射资料进行预测分析的结果表明,此方法简单易行,缩短了计算时间,在预测时问尺度及精度上具有较强的预测能力.
  • Hamel S.A noise reduction method for chaotic system.Phy.Lett.A,1990.148,421-428
    Kennel M.Method to distinguish possible chaos from color noise and to determine embeddinq parameters.Phy.Rev.A,1992,463 111-3 118
    Jafffe B.Rahin D.Using nonlinear forecasting to learn the magnitude and phasing of time varying sediment suspension in the surfzone.J.G.R.1996.101.14 283~14 296
    Farmer J D.Sidorowich J.Predicting chaotic time series.Phy.Rev.l.ett.,1987.59.845~848
    Henry D I.Prediction in chaotic nonlinear system:method of time series with broad Fourier spectra.Phy.Rev.A,1990,41,1 782~1 807
    Elsner J,Tsonis A A.Nonlinear prediction,chao and noise.Bull.Am.Met.Soc.,1992,73,49~60
    Tsonis A.Reconstruction of Dynamics from Observable.Chaos.New York:Pleum Publishing Corporation.1993.149~241
    田纪伟,孙孚,楼顺里等.相空间反演方法及其在海洋资料分析中的应用.海洋学报,1996,18(4):1~10
    Casdagli M.Nonlinear prediction of chaotic time series.Phy.D,1989,35,335~356
    Barahona M.Poon C S.Detection of nonlinear dynamics in short,noisy time series.Nature,1996.381,215~217
    Manuca R.Savit R.Model misspecification tests,model building and predictability in complex systems.Phy.D,1996.93.78~100
    Sugihara G.May R M.Nonlinear forecasting as a way of distinguishing chaos from measurement error in the time series.Nature,1990.344,734~741
    Wales D.Calculating the rate of loss of information from chaotic time series by forecasting.Nature.1991,350.485~488
    Tsonis A,Elsner J 13.Nonlinear prediction as a way of distinguishing chaos from random fractal sequences.Nature.1992.358.217~220
    Wayland R.Recognizing determinism in a time series.Phy.Rev.I,ett.,1993,70.580~582
    EH斯潘尼尔著,左再思译.代数拓扑学.上海:上海科学技术出版社,1987,124~132
    陈式刚.映象与混沌.北京:国防工业出版社,1992.106~108
  • 加载中
计量
  • 文章访问数:  780
  • HTML全文浏览量:  15
  • PDF下载量:  844
  • 被引次数: 0
出版历程
  • 收稿日期:  1997-04-28
  • 修回日期:  1998-03-16

目录

    /

    返回文章
    返回