留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同水流流速对鳗草移植植株存活、生长和生理的影响

姜晶晶 张彦浩 龙庆刚 迟会凯 张沛东

姜晶晶,张彦浩,龙庆刚,等. 不同水流流速对鳗草移植植株存活、生长和生理的影响[J]. 海洋学报,2025,47(3):1–11 doi: 10.12284/hyxb2025038
引用本文: 姜晶晶,张彦浩,龙庆刚,等. 不同水流流速对鳗草移植植株存活、生长和生理的影响[J]. 海洋学报,2025,47(3):1–11 doi: 10.12284/hyxb2025038
Jiang Jingjing,Zhang Yanhao,Long Qinggang, et al. Effects of different water velocities on survival, growth and physiology of the Zostera marina transplants[J]. Haiyang Xuebao,2025, 47(3):1–11 doi: 10.12284/hyxb2025038
Citation: Jiang Jingjing,Zhang Yanhao,Long Qinggang, et al. Effects of different water velocities on survival, growth and physiology of the Zostera marina transplants[J]. Haiyang Xuebao,2025, 47(3):1–11 doi: 10.12284/hyxb2025038

不同水流流速对鳗草移植植株存活、生长和生理的影响

doi: 10.12284/hyxb2025038
基金项目: 国家自然科学基金(42076100);威海市天鹅湖—养鱼池湾海草床生态修复及科研实验项目(横20240055);黄河口植被退化生境生态修复(横20240233)。
详细信息
    作者简介:

    姜晶晶(2000—),女,山东省淄博市人,从事海草生态学研究。E-mail:jiangjingjing@stu.ouc.edu.cn

    通讯作者:

    张沛东(1975—),男,教授,主要从事海草生态学研究。E-mail: zhangpdsg@ouc.edu.cn

  • 中图分类号: S948.8

Effects of different water velocities on survival, growth and physiology of the Zostera marina transplants

  • 摘要: 为探究鳗草(Zostera marina)移植植株应对不同水流流速的存活、生长和生理变化,明确鳗草移植植株的最适流速范围,研究了水流流速对鳗草移植植株的影响,测定了植株存活、生长和生理指标并评估其相互关系。结果显示,鳗草移植植株的存活率于0.4 m/s处理组达到最大值,是其他流速处理组的1.1~2.4倍,对照组植株则全部死亡(P<0.05);随水流流速升高,移植植株地上组织的生长呈现逐渐下降趋势,而地下组织的生长则呈现逐渐升高趋势,1 m/s处理组的叶片延伸速率相比0.2 m/s处理组下降24.0%,地下干重则达到0.2 m/s处理组的1.6倍;移植植株的叶片光合色素与非结构碳水化合物含量于0.4~0.6 m/s处理组达到最低值,相比其他处理组降低0.8%~18.5%;根据移植植株的存活生长综合收益和生理稳定性,综合计算得出鳗草移植植株的适宜流速范围为0.3~0.8 m/s,最佳水流流速范围为0.4~0.6 m/s。结果表明,适当提高水流流速能够促进移植植株的快速定植和生长扩繁。
  • 图  1  水流控制装置

    ①:水泵;②:喷嘴;③:水槽;④:水池;⑤:1 m/s流速区;⑥:0.8 m/s流速区;⑦:0.6 m/s流速区;⑧:0.4 m/s流速区;⑨:0.2 m/s流速区;⑩:植株移植装置

    Fig.  1  Water flow control device

    ①: water pump; ②: nozzle; ③: sink; ④: pool; ⑤: 1 m/s flow velocity zone; ⑥: 0.8 m/s flow velocity zone; ⑦: 0.6 m/s flow velocity zone; ⑧: 0.4 m/s flow velocity zone, ⑨: 0.2 m/s flow velocity zone, ⑩: plant transplantation device

    图  2  不同水流流速对鳗草植株存活率的影响

    误差线上的不同小写字母表示不同处理组之间存在显著差异(P<0.05),下同

    Fig.  2  The effect of different water velocities on the survival rate of Z. marina plants

    Different lowercase letters on the error bars indicate significant differences among different treatments (P<0.05), the same below

    图  3  不同水流流速对鳗草植株株高(A)、新生叶面积(B)、叶片延伸速率(C)和地上干重(D)的影响

    Fig.  3  The effect of different water velocities on the shoot height (A), new leaf area (B), leaf elongation rate (C) and aboveground weight (D) of Z. marina plants

    图  4  不同水流流速对鳗草植株侧枝数(A)、茎节直径(B)、茎节延伸速率(C)和地下干重(D)的影响

    Fig.  4  The effect of different water velocities on the branches (A), internode diameter (B), internode elongation rate (C) and belowground weight (D) of Z. marina plants

    图  5  不同水流流速对鳗草植株光合色素(A)、可溶性糖(B)和淀粉含量(C)的影响

    Fig.  5  The effect of different water velocities on the photosynthetic pigment content (A), soluble sugars content (B) and starch (C) of Z. marina plants

    图  6  不同水流流速对鳗草植株存活生长综合收益指数(A)和生理指标稳定系数(B)的影响

    Fig.  6  The effect of different water velocities on the survival and growth comprehensive income index (A) and physiological index stability coefficient (B) of Z. marina plants

    图  7  鳗草植株存活生长综合收益指数与生理指标稳定系数的关系

    Fig.  7  The relationship of survival and growth comprehensive income index and physiological index stability coefficient of Z. marina plants

  • [1] Lambert V, Bainbridge Z T, Collier C, et al. Connecting targets for catchment sediment loads to ecological outcomes for seagrass using multiple lines of evidence[J]. Marine Pollution Bulletin, 2021, 169: 112494. doi: 10.1016/j.marpolbul.2021.112494
    [2] 李文涛, 张秀梅. 海草场的生态功能[J]. 中国海洋大学学报(自然科学版), 2009, 39(5): 933−939.

    Li Wentao, Zhang Xiumei. The ecological functions of seagrass meadows[J]. Periodical of Ocean University of China, 2009, 39(5): 933−939.
    [3] 郑凤英, 韩晓弟, 张伟, 等. 大叶藻形态及生长发育特征[J]. 海洋科学, 2013, 37(10): 39−46.

    Zheng Fengying, Han Xiaodi, Zhang Wei, et al. Characteristics of morphology, growth and development of Zostera marina L.[J]. Marine Sciences, 2013, 37(10): 39−46.
    [4] Froeschke J T, Stunz G W. Hierarchical and interactive habitat selection in response to abiotic and biotic factors: the effect of hypoxia on habitat selection of juvenile estuarine fishes[J]. Environmental Biology of Fishes, 2012, 93(1): 31−41. doi: 10.1007/s10641-011-9887-y
    [5] Waycott M, Duarte C M, Carruthers T J B, et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(30): 12377−12381.
    [6] 周毅, 江志坚, 邱广龙, 等. 中国海草资源分布现状、退化原因与保护对策[J]. 海洋与湖沼, 2023, 54(5): 1248−1257.

    Zhou Yi, Jiang Zhijian, Qiu Guanglong, et al. Distribution status, degradation reasons and protection countermeasures of seagrass resources in China[J]. Oceanologia et Limnologia Sinica, 2023, 54(5): 1248−1257.
    [7] Tan Yimei, Coleman R A, Biro P A. Developing seed- and shoot-based restoration approaches for the seagrass, Zostera muelleri[J]. Restoration Ecology, 2023, 31(5): e13902. doi: 10.1111/rec.13902
    [8] Saewong C, Ow Y X, Nualla-ong A, et al. Comparative effects of heat stress on photosynthesis and oxidative stress in Halophila ovalis and Thalassia hemprichii under different light conditions[J]. Marine Environmental Research, 2024, 199: 106589. doi: 10.1016/j.marenvres.2024.106589
    [9] de Boer W F. Seagrass–sediment interactions, positive feedbacks and critical thresholds for occurrence: a review[J]. Hydrobiologia, 2007, 591(1): 5−24. doi: 10.1007/s10750-007-0780-9
    [10] Orth R J, Carruthers T J B, Dennison W C, et al. A global crisis for seagrass ecosystems[J]. Bioscience, 2006, 56(12): 987−996. doi: 10.1641/0006-3568(2006)56[987:AGCFSE]2.0.CO;2
    [11] De Cock A W A M. Flowering, pollination and fruiting in Zostera marina L.[J]. Aquatic Botany, 1980, 9: 201−220. doi: 10.1016/0304-3770(80)90023-6
    [12] Westlake D F. Some effects of low-velocity currents on the metabolism of aquatic macrophytes[J]. Journal of Experimental Botany, 1967, 18(2): 187−205. doi: 10.1093/jxb/18.2.187
    [13] Conover J T. The importance of natural diffusion gradients and transport of substances related to benthic marine plant metabolism[J]. Botanica Marina, 1968, 11(1/4): 1−9.
    [14] Stevenson J C. Comparative ecology of submersed grass beds in freshwater, estuarine, and marine environments[J]. Limnology and Oceanography, 1988, 33(4part2): 867−893. doi: 10.4319/lo.1988.33.4part2.0867
    [15] Koch E W. Preliminary evidence on the interdependent effect of currents and porewater geochemistry on Thalassia testudinum Banks ex König seedlings[J]. Aquatic Botany, 1999, 63(2): 95−102. doi: 10.1016/S0304-3770(98)00116-8
    [16] Harlin M M, Thorne-Miller B. Nutrient enrichment of seagrass beds in a Rhode Island coastal lagoon[J]. Marine biology, 1981, 65(3): 221−229. doi: 10.1007/BF00397115
    [17] 刘子健, 李卫明, 张续同, 等. 静水与流水条件下沉水植物生长对上覆水和沉积物磷迁移的影响[J]. 环境科学研究, 2023, 36(5): 975−985.

    Liu Zijian, Li Weiming, Zhang Xutong, et al. Effects of submerged macrophytes on phosphorus transport between overlying water and sediment in the growth period under static and flowing conditions[J]. Research of Environmental Sciences, 2023, 36(5): 975−985.
    [18] van Katwijk M M, Hermus D C R. Effects of water dynamics on Zostera marina: transplantation experiments in the intertidal Dutch Wadden Sea[J]. Marine Ecology Progress Series, 2000, 208: 107−118. doi: 10.3354/meps208107
    [19] Fonseca M S, Zieman J C, Thayer G W, et al. The role of current velocity in structuring eelgrass (Zostera marina L. ) meadows[J]. Estuarine, Coastal and Shelf Science, 1983, 17(4): 367−380. doi: 10.1016/0272-7714(83)90123-3
    [20] Fonseca M S, Kenworthy W J. Effects of current on photosynthesis and distribution of seagrasses[J]. Aquatic Botany, 1987, 27(1): 59−78. doi: 10.1016/0304-3770(87)90086-6
    [21] 张倩, 柳杰, 张沛东, 等. 不同水流流速对大叶藻移植植株存活、生长及光合色素含量的影响[J]. 海洋环境科学, 2015, 34(6): 806−812.

    Zhang Qian, Liu Jie, Zhang Peidong, et al. Effects of different current velocities on survival, growth and photosynthetic pigment contents of Zostera marina transplants[J]. Marine Environmental Science, 2015, 34(6): 806−812.
    [22] 刘有才, 李林强, 马旺, 等. 鳗草海草床植株移植方法及应用效果研究[J]. 河北地质大学学报, 2023, 46(6): 75−79.

    Liu Youcai, Li Linqiang, Ma Wang, et al. Study on transplanting method and application effect of eelgrass bed plants[J]. Journal of Hebei GEO University, 2023, 46(6): 75−79.
    [23] Zhang Yanhao, Yu Bing, Liu Youcai, et al. The influence of decreased salinity levels on the survival, growth and physiology of eelgrass Zostera marina[J]. Marine Environmental Research, 2022, 182: 105787. doi: 10.1016/j.marenvres.2022.105787
    [24] Zieman J C. Methods for the study of the growth and production of turtle grass, Thalassia testudinum König[J]. Aquaculture, 1974, 4: 139−143. doi: 10.1016/0044-8486(74)90029-5
    [25] Xu Junge, Zhang Qian, Li Hongchen, et al. Changes in survival, growth and photosynthetic pigment in response to iron increase in the leaf and root-rhizome tissues of eelgrass Zostera marina[J]. Aquatic Botany, 2019, 154: 60−65. doi: 10.1016/j.aquabot.2018.12.007
    [26] 王文杰, 贺海升, 关宇, 等. 丙酮和二甲基亚砜法测定植物叶绿素和类胡萝卜素的方法学比较[J]. 植物研究, 2009, 29(2): 224−229. doi: 10.7525/j.issn.1673-5102.2009.02.017

    Wang Wenjie, He Haisheng, Guan Yu, et al. Methodological comparison of chlorophyll and carotenoids contents of plant species measured by DMSO and acetone-extraction methods[J]. Bulletin of Botanical Research, 2009, 29(2): 224−229. doi: 10.7525/j.issn.1673-5102.2009.02.017
    [27] Lewis M A, Dantin D D, Chancy C A, et al. Florida seagrass habitat evaluation: a comparative survey for chemical quality[J]. Environmental Pollution, 2007, 146(1): 206−218. doi: 10.1016/j.envpol.2006.04.041
    [28] Koch E W. Beyond light: physical, geological, and geochemical parameters as possible submersed aquatic vegetation habitat requirements[J]. Estuaries, 2001, 24(1): 1−17. doi: 10.2307/1352808
    [29] Pedersen O, Binzer T, Borum J. Sulphide intrusion in eelgrass (Zostera marina L. )[J]. Plant, Cell & Environment, 2004, 27(5): 595−602.
    [30] Zhang Yu, Yue Shidong, Gao Yaping, et al. Insights into response of seagrass (Zostera marina) to sulfide exposure at morphological, physiochemical and molecular levels in context of coastal eutrophication and warming[J]. Plant, Cell & Environment, 2024, 47(12): 4768−4785.
    [31] Wargo C A, Styles R. Along channel flow and sediment dynamics at North Inlet, South Carolina[J]. Estuarine, Coastal and Shelf Science, 2007, 71(3/4): 669−682.
    [32] Cabaço S, Santos R, Duarte C M. The impact of sediment burial and erosion on seagrasses: a review[J]. Estuarine, Coastal and Shelf Science, 2008, 79(3): 354−366. doi: 10.1016/j.ecss.2008.04.021
    [33] Bastyan G R, Cambridge M L. Transplantation as a method for restoring the seagrass Posidonia australis[J]. Estuarine, Coastal and Shelf Science, 2008, 79(2): 289−299. doi: 10.1016/j.ecss.2008.04.012
    [34] Schanz A, Asmus H. Impact of hydrodynamics on development and morphology of intertidal seagrasses in the Wadden Sea[J]. Marine Ecology Progress Series, 2003, 261: 123−134. doi: 10.3354/meps261123
    [35] Jiménez-Ramos R, Henares C, Egea L G, et al. Leaf senescence of the seagrass Cymodocea nodosa in Cádiz Bay, Southern Spain[J]. Diversity, 2023, 15(2): 187. doi: 10.3390/d15020187
    [36] La Nafie Y A, de Los Santos C B, Brun F G, et al. Waves and high nutrient loads jointly decrease survival and separately affect morphological and biomechanical properties in the seagrass Zostera noltii[J]. Limnology and Oceanography, 2012, 57(6): 1664−1672. doi: 10.4319/lo.2012.57.6.1664
    [37] de Los Santos C B, Brun F G, Bouma T J, et al. Acclimation of seagrass Zostera noltii to co-occurring hydrodynamic and light stresses[J]. Marine Ecology Progress Series, 2010, 398: 127−135. doi: 10.3354/meps08343
    [38] Puijalon S, Bornette G, Sagnes P. Adaptations to increasing hydraulic stress: morphology, hydrodynamics and fitness of two higher aquatic plant species[J]. Journal of Experimental Botany, 2005, 56(412): 777−786. doi: 10.1093/jxb/eri063
    [39] Widdows J, Pope N D, Brinsley M D, et al. Effects of seagrass beds (Zostera noltii and Z. marina) on near-bed hydrodynamics and sediment resuspension[J]. Marine Ecology Progress Series, 2008, 358: 125−136. doi: 10.3354/meps07338
    [40] Di Carlo G, Badalamenti F, Terlizzi A. Recruitment of Posidonia oceanica on rubble mounds: Substratum effects on biomass partitioning and leaf morphology[J]. Aquatic Botany, 2007, 87(2): 97−103. doi: 10.1016/j.aquabot.2007.02.003
    [41] McKone K L. Light available to the seagrass Zostera marina when exposed to currents and waves[D]. Maryland: University of Maryland, 2009.
    [42] Puijalon S, Bouma T J, Van Groenendael J, et al. Clonal plasticity of aquatic plant species submitted to mechanical stress: escape versus resistance strategy[J]. Annals of Botany, 2008, 102(6): 989−996. doi: 10.1093/aob/mcn190
    [43] van de Ven C N, van der Heide T, Bouma T J, et al. Co-occurring intertidal ecosystem engineers with opposing growth strategies show opposite responses to environmental gradients during establishment[J]. Oikos, 2024, 2024(7): e10546. doi: 10.1111/oik.10546
    [44] 张宏瑜. 红纤维虾形草对氮元素吸收能力的评价及其植株移植方法的优化[D]. 青岛: 中国海洋大学, 2021. (查阅网上资料, 未找到本条文献信息, 请确认)

    Zhang Hongyu. Evaluation of nitrogen absorption capacity and optimization of shoot transplanting methods of Phyllospadix iwatensis[D]. Qingdao: Ocean University of China, 2021.
    [45] 程冉, 侯鑫, 王欢, 等. 红纤维虾形草移植植株存活、生长和生理对不同水动力条件的响应[J]. 渔业科学进展, 2022, 43(2): 21−31.

    Cheng Ran, Hou Xin, Wang Huan, et al. Survival, growth, and physiological responses of surfgrass transplants to different hydrodynamic regimes[J]. Progress in Fishery Sciences, 2022, 43(2): 21−31.
    [46] Wicks E C, Koch E W, O’Neil J M, et al. Effects of sediment organic content and hydrodynamic conditions on the growth and distribution of Zostera marina[J]. Marine Ecology Progress Series, 2009, 378: 71−80. doi: 10.3354/meps07885
    [47] Lamit N, Tanaka Y. Species-specific distribution of intertidal seagrasses along environmental gradients in a tropical estuary (Brunei Bay, Borneo)[J]. Regional Studies in Marine Science, 2019, 29: 100671. doi: 10.1016/j.rsma.2019.100671
    [48] Bradley M P, Stolt M H. Landscape-level seagrass–sediment relations in a coastal lagoon[J]. Aquatic Botany, 2006, 84(2): 121−128. doi: 10.1016/j.aquabot.2005.08.003
    [49] Zhang Qian, Liu Jie, Zhang Peidong, et al. Effect of silt and clay percentage in sediment on the survival and growth of eelgrass Zostera marina: transplantation experiment in Swan Lake on the eastern coast of Shandong Peninsula, China[J]. Aquatic Botany, 2015, 122: 15−19. doi: 10.1016/j.aquabot.2015.01.001
    [50] van der Heide T, Temmink R J M, Fivash G S, et al. Coastal restoration success via emergent trait-mimicry is context dependent[J]. Biological Conservation, 2021, 264: 109373. doi: 10.1016/j.biocon.2021.109373
    [51] 吴晓晓. 鳗草应对水体浊度升高的响应过程与机理研究[D]. 青岛: 中国海洋大学, 2019.

    Wu Xiaoxiao. Studies on the response process and mechanism of eelgrass (Zostera marina L. ) to the increase of water turbidity[D]. Qingdao: Ocean University of China, 2019. (查阅网上资料, 未找到对应的英文翻译, 请确认)
    [52] Manzanera M, Alcoverro T, Tomas F, et al. Response of Posidonia oceanica to burial dynamics[J]. Marine Ecology Progress Series, 2011, 423: 47−56. doi: 10.3354/meps08970
    [53] Fonseca M S, Cahalan J A. A preliminary evaluation of wave attenuation by four species of seagrass[J]. Estuarine, Coastal and Shelf Science, 1992, 35(6): 565−576. doi: 10.1016/S0272-7714(05)80039-3
    [54] Carus J, Arndt C, Schröder B, et al. Using artificial seagrass for promoting positive feedback mechanisms in seagrass restoration[J]. Frontiers in Marine Science, 2021, 8: 546661. doi: 10.3389/fmars.2021.546661
    [55] Infantes E, Orfila A, Bouma T J, et al. Posidonia oceanica and Cymodocea nodosa seedling tolerance to wave exposure[J]. Limnology and Oceanography, 2011, 56(6): 2223−2232. doi: 10.4319/lo.2011.56.6.2223
    [56] Cabaço S, Santos R, Duarte C M. The impact of sediment burial and erosion on seagrasses: a review[J]. Estuarine, Coastal and Shelf Science, 2008, 79(3): 354−366. (查阅网上资料, 本条文献与第32条文献重复, 请确认)
    [57] Whitford L A, Schumacher G J. Effect of a current on respiration and mineral uptake in Spirogyra and Oedogonium[J]. Ecology, 1964, 45(1): 168−170. doi: 10.2307/1937120
    [58] Koch E W. Hydrodynamics, diffusion-boundary layers and photosynthesis of the seagrasses Thalassia testudinum and Cymodocea nodosa[J]. Marine Biology, 1994, 118(4): 767−776. doi: 10.1007/BF00347527
    [59] Jordan T L. Acclimation of marine macrophytes (Saccharina latissima and Zostera marina) to water flow[D]. Maryland: University of Maryland, 2008.
    [60] Fonseca M S, Fisher J S, Zieman J C, et al. Influence of the seagrass, Zostera marina L. , on current flow[J]. Estuarine, Coastal and Shelf Science, 1982, 15(4): 351−364.
    [61] Enríquez S, Rodríguez-Román A. Effect of water flow on the photosynthesis of three marine macrophytes from a fringing-reef lagoon[J]. Marine Ecology Progress Series, 2006, 323: 119−132. doi: 10.3354/meps323119
    [62] Loewe A, Einig W, Shi Lanbo, et al. Mycorrhiza formation and elevated CO2 both increase the capacity for sucrose synthesis in source leaves of spruce and aspen[J]. New Phytologist, 2000, 145(3): 565−574. doi: 10.1046/j.1469-8137.2000.00598.x
    [63] Silva J, Barrote I, Costa M M, et al. Physiological responses of Zostera marina and Cymodocea nodosa to light-limitation stress[J]. PLoS One, 2013, 8(11): e81058. doi: 10.1371/journal.pone.0081058
    [64] 黄晓龙, 谢洪民, 魏伟伟, 等. 不同水深对挺水植物形态和生理指标的影响[J]. 环境科学研究, 2021, 34(11): 2706−2713.

    Huang Xiaolong, Xie Hongmin, Wei Weiwei, et al. Effect of different water depths on morphological and physiological traits of emergent plants[J]. Research of Environmental Sciences, 2021, 34(11): 2706−2713.
    [65] 江志坚, 黄小平, 张景平. 环境胁迫对海草非结构性碳水化合物储存和转移的影响[J]. 生态学报, 2012, 32(19): 6242−6250. doi: 10.5846/stxb201108311275

    Jiang Zhijian, Huang Xiaoping, Zhang Jingping. Effect of environmental stress on non-structural carbohydrates reserves and transfer in seagrasses[J]. Acta Ecologica Sinica, 2012, 32(19): 6242−6250. doi: 10.5846/stxb201108311275
  • 加载中
图(7)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  18
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 网络出版日期:  2025-02-11

目录

    /

    返回文章
    返回