Analysis of invertebrate diversity and co-occurrence network based on environmental DNA metabarcoding in autumn typical tidal creek units of the Yellow River Delta
-
摘要: 潮沟系统作为滨海湿地中活跃的地貌单元,不同级别潮沟水文环境变化显著,进而导致生物群落的空间分布出现差异。本研究选取黄河三角洲典型潮沟单元,利用环境DNA宏条形码(environmental DNA metabarcoding,eDNA)技术检测不同级别潮沟无脊椎动物多样性,采用生物共现网络分析和冗余分析(RDA)分别揭示典型潮沟无脊椎动物关键种与驱动因素。结果表明:该潮沟单元共检测到无脊椎动物127个分类操作单元(Operational Taxonomic Units,OTUs),隶属于9门24纲53目103科87属90种。无脊椎动物门水平和属水平分别以节肢动物门(43.9%)和围沙蚕属(Perinereis )(25.2%)为优势类群。群落综合多样性指标(Comprehensive diversity index,CD)分析显示,三级潮沟综合多样性最高,一级潮沟无脊椎动物综合多样性最低。生物共现网络分析显示,线围沙蚕(Perinereis linea)和双枝薮枝螅(Obelia dichotoma)为关键种,对维持该潮沟无脊椎动物群落结构稳定起关键作用。RDA显示,水体的硅酸盐含量、温度和沉积物的粉砂、粘土占比是影响该潮沟无脊椎动物群落特征的主要环境因子。相关性网络分析显示,关键种受硅酸盐含量、粘土和水体氮元素含量的显著影响(P < 0.05)。研究结果有助于了解黄河三角洲典型潮沟无脊椎动物群落结构,揭示典型潮沟无脊椎动物关键种,并为无脊椎动物多样性监测与保护提供数据支持与理论参考。Abstract: The tidal creek system is an active geomorphic unit in coastal wetlands, and the water environment of different level tidal creeks changes significantly, leading to spatial distribution differences of biological communities. This study selected a typical tidal creek unit in the Yellow River Delta and used environmental DNA metabarcoding (eDNA) technique to detect the diversity of invertebrates. The biological co-occurrence network analysis was used to reveal the key species and driving factors of invertebrates in the typical tidal creek. The results showed that a total of 127 operational taxonomic units (OTUs) of invertebrates were detected in the tidal creek unit, belonging to 9 phyla, 24 classes, 53 orders, 103 families, 87 genera, and 90 species; among them, the class level was dominated by the Arthropoda (43.9%), and the genus level was dominated by the Perinereis (25.2%). The comprehensive diversity index (CD) analysis showed that the comprehensive diversity of invertebrates in the third-level tidal creek was the highest, and the comprehensive diversity of invertebrates in the first-level tidal creek was the lowest. The biological co-occurrence network analysis showed that the Perinereis linea and the Obelia dichotoma were the keystone species, which played a key role in maintaining the stability of the invertebrate community structure in the tidal creek. The RDA showed that the silicate content of the water body, temperature, and the proportion of fine sand and clay in the sediment were the main environmental factors affecting the invertebrate community characteristics in the tidal creek. Correlation network analysis showed that the keystone species were significantly affected by silicate content, clay, and nitrogen content in water (P < 0.05). The research results are helpful for understanding the community structure of typical tidal ditch invertebrates, revealing the keystone species of typical tidal ditch invertebrates, and providing data support and theoretical reference for the monitoring and protection of invertebrate diversity.
-
图 4 无脊椎动物科水平(a)和种水平(b)的生物共现网络拓扑图
图中节点表示无脊椎动物;不同节点颜色表示不同模块;节点大小表示物种相对丰度;边颜色表示正负相关性,红色表示正相关,绿色表示负相关;边大小表示相关性系数绝对值大小。
Fig. 4 Topology of biological co-occurrence networks at family (a) and species levels (b) of invertebrates
The nodes in the graph represent invertebrates; different node colors represent different modules; node size represents the relative abundance of species. Edge colors represent positive and negative correlations, with red indicating positive correlation and green indicating negative correlation; edge size represents the absolute value of the correlation coefficient.
图 6 科水平(a)和种水平(b)关键类群与环境因子相关性分析
图中蓝色节点表示无脊椎动物,节点大小表示无脊椎动物相对丰度大小;红色节点表示环境因子;边颜色表示正负相关性,红色表示正相关,黑色表示负相关;边大小表示相关性系数绝对值大小。
Fig. 6 Correlation analysis of keystone groups and environmental factors at family level (a) and species level (b)
The blue nodes in the figure represent invertebrates, and the size of the nodes indicates the relative abundance of invertebrates. The red nodes represent environmental factors. The color of the edges indicates the sign of the correlation, with red indicating positive correlation and black indicating negative correlation; the size of the edges indicates the absolute value of the correlation coefficient.
表 1 DNA宏条形码测序结果
Tab. 1 environmental DNA metabarcoding sequencing results
类群 序列数 OTUs 序列百分比 节肢动物门Arthropoda 16123 50 38.4% 环节动物门Annelida 11645 6 27.8% 刺胞动物门Cnidaria 5662 22 13.5% 软体动物门Mollusca 3920 28 9.4% 线虫动物门Nematoda 2543 4 6.1% 棘皮动物门Echinodermata 716 2 1.7% 扁形动物门Platyhelminthes 704 7 1.7% 多孔动物门Porifera 426 5 1.0% 纽形动物门Nemertea 206 3 0.5% 合计Total 41945 127 100% 表 2 黄河三角洲典型潮沟无脊椎动物α多样性指数
Tab. 2 Invertebrate alpha diversity index in typical tidal creek of Yellow River Delta
样点 辛普森
指数香农
指数均匀度
指数Chao1
指数ACE
指数综合多样性
指数S3S 0.945 3.539 0.764 109.000 107.300 0.21 S2S 0.913 3.344 0.736 115.000 104.100 0.18 S2X 0.723 2.527 0.563 89.500 89.180 0.03 S1S 0.601 1.790 0.394 105.200 98.930 0.05 S1X 0.938 3.416 0.748 97.870 98.940 0.09 表 3 无脊椎动物生物共现网络特征指标
Tab. 3 Characteristic index of invertebrate co-occurrence network
特征
指标平均度 平均加
权度网络
直径图密度 模块化
系数平均聚类
系数平均路径
长度模块数 科水平 5.92 11.38 5 0.11 0.64 0.87 1.43 3 种水平 12.84 25.69 4 0.25 0.54 0.6 2.1 8 -
[1] 刘丹丹, 武海涛, 芦康乐, 等. 空间和环境因子对黄河口自然和淡水恢复湿地底栖动物群落的差异影响[J]. 生态学报, 2021, 41(17): 6893−6903.Liu Dandan, Wu Haitao, Lu Kangle, et al. Effects of spatial and environmental factors on benthic invertebrate communities in natural and freshwater restored wetlands of the Yellow River Delta[J]. Acta Ecologica Sinica, 2021, 41(17): 6893−6903. [2] Mou Kuinan, Gong Zhaoning, Qiu Huachang. Spatiotemporal differentiation and development process of tidal creek network morphological characteristics in the Yellow River Delta[J]. Journal of Geographical Sciences, 2021, 31(11): 1633−1654. [3] Zhou Shiwei, Wang Cheng, Li Yufeng, et al. Study on spatio-temporal variation and hydrological connectivity of tidal creek evolution in Yancheng coastal wetlands[J]. Environmental Science and Pollution Research, 2023, 30(13): 37143−37156. [4] 龚政, 严佳伟, 耿亮, 等. 开敞式潮滩-潮沟系统发育演变动力机制——Ⅲ. 海平面上升影响[J]. 水科学进展, 2018, 29(1): 109−117.Gong Zheng, Yan Jiawei, Geng Liang, et al. Mechanisms underlying the dynamic evolution of an open-coast tidal flat-creek system: Ⅲ: impact of sea level rise[J]. Advances in Water Science, 2018, 29(1): 109−117. [5] 葛嘉欣, 崔步礼, 王晓杰, 等. 潮沟形态对潮滩湿地土壤有机碳空间分布的影响[J]. 环境工程, 2023, 41(6): 23−31.Ge Jiaxin, Cui Buli, Wang Xiaojie, et al. Effects of tidal creek morphology on spatial distribution of soil organic carbon in soil in tidal wetland[J]. Environmental Engineering, 2023, 41(6): 23−31. [6] Zhao Guangming, Ye Siyuan, He Lei, et al. Historical change of carbon burial in Late Quaternary sediments of the ancient Yellow River delta on the west coast of Bohai Bay, China[J]. CATENA, 2020, 193: 104619. doi: 10.1016/j.catena.2020.104619 [7] 刘艳芬, 左明, 王晓璇, 等. 黄河三角洲潮间带底栖贝类群落结构与多样性研究[J]. 海洋湖沼通报, 2022, 44(6): 121−129Liu Yanfen, Zuo Ming, Wang Xiaoxuan, et al. Community structure and diversity of benthic shellfish in the intertidal zone of Yellow River Delta[J]. Transactions of Oceanology and Limnology, 2022, 44(6): 121−129 [8] 徐凤山, 张均龙. 中国海典型生境双壳类软体动物多样性特点[J]. 生物多样性, 2011, 19(6): 716−722.Xu Fengshan, Zhang Junlong. Characteristics of bivalve diversity in typical habitats of China seas[J]. Biodiversity Science, 2011, 19(6): 716−722. [9] 芦康乐, 武海涛, 吕宪国, 等. 湿地水生无脊椎动物群落结构及影响因素[J]. 生态学杂志, 2017, 36(10): 2961−2970.Lu Kangle, Wu Haitao, Lü Xianguo, et al. Review on the structure and influencing factors of aquatic invertebrates in wetland ecosystems[J]. Chinese Journal of Ecology, 2017, 36(10): 2961−2970. [10] Vlaswinkel B M, Cantelli A. Geometric characteristics and evolution of a tidal channel network in experimental setting[J]. Earth Surface Processes and Landforms, 2011, 36(6): 739−752. doi: 10.1002/esp.2099 [11] 陈莉, 陈琳琳, 董志远, 等. 黄河三角洲典型潮沟系统水文连通性对大型底栖动物群落结构的影响[J]. 生态学报, 2023, 43(22): 9232−9246.Chen Li, Chen Linlin, Dong Zhiyuan, et al. Influence of hydrological connectivity of typical tidal creek system on macrobenthos community structure in the Yellow River Delta[J]. Acta Ecologica Sinica, 2023, 43(22): 9232−9246. [12] Wang Tuantuan, Wang Xiaodi, Wang Dingying, et al. Aquatic invertebrate diversity profiling in heterogeneous wetland habitats by environmental DNA metabarcoding[J]. Ecological Indicators, 2023, 150: 110126. [13] 修玉娇, 龙诗颖, 李晓茜, 等. 黄河三角洲底栖动物群落分布及与环境的关系[J]. 北京师范大学学报(自然科学版), 2021, 57(1): 112−120.Xiu Yujiao, Long Shiying, Li Xiaoqian, et al. Macro benthos community distribution in the Yellow River Delta and correlation with environment[J]. Journal of Beijing Normal University (Natural Science), 2021, 57(1): 112−120. [14] 左倬, 陈煜权, 成必新, 等. 不同植物配置下人工湿地大型底栖动物群落特征及其与环境因子的关系[J]. 生态学报, 2016, 36(4): 953−960.Zuo Zhuo, Chen Yuquan, Cheng Bixin, et al. Ecological characteristics of macrobenthic communities in SFWs of different hydrophytes and their relationships with environmental factors[J]. Acta Ecologica Sinica, 2016, 36(4): 953−960. [15] Fierro P, Arismendi I, Hughes R M, et al. A benthic macroinvertebrate multimetric index for Chilean Mediterranean streams[J]. Ecological Indicators, 2018, 91: 13−23. doi: 10.1016/j.ecolind.2018.03.074 [16] Gleason J E, Rooney R C. Aquatic macroinvertebrates are poor indicators of agricultural activity in northern prairie pothole wetlands[J]. Ecological Indicators, 2017, 81: 333−339. [17] Xu Yong, Sui Jixing, Ma Lin, et al. Temporal variation of macrobenthic community zonation over nearly 60 years and the effects of latitude and depth in the southern Yellow Sea and East China Sea[J]. Science of the Total Environment, 2020, 739: 139760. doi: 10.1016/j.scitotenv.2020.139760 [18] Wang Meng, Yergaliyev T, Sun Changhai, et al. Environmental DNA metabarcoding of intertidal meiofauna sheds light on its potential for habitat discovery[J]. Ecological Indicators, 2023, 150: 110223. doi: 10.1016/j.ecolind.2023.110223 [19] Li Jianlong, Hatton-Ellis T W, Handley L J L, et al. Ground-truthing of a fish-based environmental DNA metabarcoding method for assessing the quality of lakes[J]. Journal of Applied Ecology, 2019, 56(5): 1232−1244. doi: 10.1111/1365-2664.13352 [20] Wu Qianqian, Sakata M K, Wu Diyi, et al. Application of environmental DNA metabarcoding in a lake with extensive algal blooms[J]. Limnology, 2021, 22(3): 363−370. doi: 10.1007/s10201-021-00663-1 [21] 董志远, 陈琳琳, 张乃鹏, 等. 基于环境DNA宏条形码技术研究黄河三角洲典型潮沟系统鱼类多样性及其对水文连通性的响应[J]. 生物多样性, 2023, 31(7): 23073. doi: 10.17520/biods.2023073Dong Zhiyuan, Chen Linlin, Zhang Naipeng, et al. Response of fish diversity to hydrological connectivity of typical tidal creek system in the Yellow River Delta based on environmental DNA metabarcoding[J]. Biodiversity Science, 2023, 31(7): 23073. doi: 10.17520/biods.2023073 [22] 王晨, 陶孟, 李爱民, 等. 基于环境DNA宏条形码技术的秦淮河生物多样性研究[J]. 生态学报, 2022, 42(2): 611−624.Wang Chen, Tao Meng, Li Aimin, et al. Research on the biodiversity of Qinhuai River based on environmental DNA metabacroding[J]. Acta Ecologica Sinica, 2022, 42(2): 611−624. [23] Bombin S, Wysor B, Lopez-Bautista J M. Assessment of littoral algal diversity from the northern Gulf of Mexico using environmental DNA metabarcoding[J]. Journal of Phycology, 2021, 57(1): 269−278. doi: 10.1111/jpy.13087 [24] McElroy M E, Dressler T L, Titcomb G C, et al. Calibrating environmental DNA metabarcoding to conventional surveys for measuring fish species richness[J]. Frontiers in Ecology and Evolution, 2020, 8: 276. doi: 10.3389/fevo.2020.00276 [25] 周春花, 王蓉蓉, 王生, 等. 基于环境DNA宏条形码技术的赣江下游(南昌段)鱼类多样性[J]. 湖泊科学, 2023, 35(4): 1423−1432. doi: 10.18307/2023.0435Zhou Chunhua, Wang Rongrong, Wang Sheng, et al. Fish diversity in Nanchang section of the lower Ganjiang River based on environmental DNA metabarcoding[J]. Journal of Lake Sciences, 2023, 35(4): 1423−1432. doi: 10.18307/2023.0435 [26] Deiner K, Bik H M, Mächler E, et al. Environmental DNA metabarcoding: transforming how we survey animal and plant communities[J]. Molecular Ecology, 2017, 26(21): 5872−5895. doi: 10.1111/mec.14350 [27] Shore J, Chu C J, Bianchi M T. Power laws and fragility in flow networks[J]. Social Networks, 2013, 35(1): 116−123. [28] D'amen M, Mod H K, Gotelli N J, et al. Disentangling biotic interactions, environmental filters, and dispersal limitation as drivers of species co-occurrence[J]. Ecography, 2018, 41(8): 1233−1244. doi: 10.1111/ecog.03148 [29] Friberg N, Bonada N, Bradley D C, et al. Biomonitoring of human impacts in freshwater ecosystems: the good, the bad and the ugly[J]. Advances in Ecological Research, 2011, 44: 1−68. [30] Layeghifard M, Hwang D M, Guttman D S. Disentangling interactions in the microbiome: a network perspective[J]. Trends in Microbiology, 2017, 25(3): 217−228. doi: 10.1016/j.tim.2016.11.008 [31] Zappelini C, Karimi B, Foulon J, et al. Diversity and complexity of microbial communities from a chlor-alkali tailings dump[J]. Soil Biology and Biochemistry, 2015, 90: 101−110. doi: 10.1016/j.soilbio.2015.08.008 [32] Ford B M, Roberts J D. Evolutionary histories impart structure into marine fish heterospecific co-occurrence networks[J]. Global Ecology and Biogeography, 2019, 28(9): 1310−1324. [33] Yuan M M, Guo Xue, Wu Linwei, et al. Climate warming enhances microbial network complexity and stability[J]. Nature Climate Change, 2021, 11(4): 343−348. doi: 10.1038/s41558-021-00989-9 [34] Strahler A N. Dynamic basis of geomorphology[J]. GSA Bulletin, 1952, 63(9): 923−938. doi: 10.1130/0016-7606(1952)63[923:DBOG]2.0.CO;2 [35] Clark D E, Pilditch C A, Pearman J K, et al. Environmental DNA metabarcoding reveals estuarine benthic community response to nutrient enrichment – Evidence from an in-situ experiment[J]. Environmental Pollution, 2020, 267: 115472. doi: 10.1016/j.envpol.2020.115472 [36] Leray M, Yang J Y, Meyer C P, et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents[J]. Frontiers in Zoology, 2013, 10(1): 34. doi: 10.1186/1742-9994-10-34 [37] Ji Fenfen, Han Dingyi, Yan Liang, et al. Assessment of benthic invertebrate diversity and river ecological status along an urbanized gradient using environmental DNA metabarcoding and a traditional survey method[J]. Science of the Total Environment, 2022, 806: 150587. doi: 10.1016/j.scitotenv.2021.150587 [38] 中国科学院中国动物志编辑委员会, 任先秋. 中国动物志 无脊椎动物 第四十三卷 甲壳动物亚门 端足目 钩虾亚目 (二)[M]. 北京: 科学出版社, 2012.Editorial Committee of Zoology of China, Chinese Academy of Sciences, Ren Xianqiu. Fauna Sinica Vol. 43 II Invertebrata Crustacea Amphipoda Gammaridea[M]. Beijing: Science Press, 2012. [39] 刘月英, 张文珍, 王跃先, 等. 中国经济动物志: 淡水软体动物[M]. 北京: 科学出版社, 1979.Liu Yueying, Zhang Wenzhen, Wang Yuexian, et al. Economic Fauna of China: Freshwater Mollusk[M]. Beijing: Science Press, 1979. (查阅网上资料, 未找到对应的英文翻译, 请确认) [40] 李新正, 王洪法. 胶州湾大型底栖生物鉴定图谱[M]. 北京: 科学出版社, 2016.Li Xinzheng, Wang Hongfa. Identification Atlas of Macrobenthos in Jiaozhou Bay[M]. Beijing: Science Press, 2016. (查阅网上资料, 未找到对应的英文翻译, 请确认) [41] 曹晓俊. 对我国上市银行经营业绩的分析——基于主成分分析、因子分析和聚类分析的方法[J]. 宿州学院学报, 2016, 31(7): 25−29.Cao Xiaojun. An analysis of the operating performance of listed banks in China - based on principal component analysis, factor analysis, and cluster analysis methods[J]. Journal of Suzhou University, 2016, 31(7): 25−29. (查阅网上资料, 未找到对应的英文翻译, 请确认) [42] 陈凯, 肖能文, 王备新, 等. 黄河三角洲石油生产对东营湿地底栖动物群落结构和水质生物评价的影响[J]. 生态学报, 2012, 32(6): 1970−1978. doi: 10.5846/stxb201102170185Chen Kai, Xiao Nengwen, Wang Beixin, et al. The effects of petroleum exploitation on water quality bio-assessment and benthic macro-invertebrate communities in the Yellow River Delta wetland, Dongying[J]. Acta Ecologica Sinica, 2012, 32(6): 1970−1978. doi: 10.5846/stxb201102170185 [43] 伊锋, 李雪艳, 许国纯, 等. 潮滩干湿转换的地貌发育物理模型及动力机制[J]. 海洋通报, 2020, 39(3): 372−380.Yi Feng, Li Xueyan, Xu Guochun, et al. Physical model of landform development and its dynamic mechanism response to dry-wet conversion of tidal flat[J]. Marine Science Bulletin, 2020, 39(3): 372−380. [44] Chu Tianjiang, Sheng Qiang, Wang Sikai, et al. Variability of polychaete secondary production in intertidal creek networks along a stream-order gradient[J]. PLoS One, 2014, 9(5): e97287. doi: 10.1371/journal.pone.0097287 [45] 姜亦松, 丛艺, 张明兴, 等. PET微纤维在双齿围沙蚕体内的摄入排出动力学研究[J]. 海洋环境科学, 2024, 43(2): 243−251. doi: 10.12111/j.mes.2023-x-0329Jiang Yisong, Cong Yi, Zhang Mingxing, et al. Study on the uptake and depuration kinetics of PET microfibers in the polychaete Perinereis aibuhitensis[J]. Marine Environmental Science, 2024, 43(2): 243−251. doi: 10.12111/j.mes.2023-x-0329 [46] Batzer D P, Wu Haitao. Ecology of terrestrial arthropods in freshwater wetlands[J]. Annual Review of Entomology, 2020, 65: 101−119. [47] Olesen J M, Bascompte J, Dupont Y L, et al. The modularity of pollination networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(50): 19891−19896. [48] Zhao Dayong, Shen Feng, Zeng Jin, et al. Network analysis reveals seasonal variation of co-occurrence correlations between Cyanobacteria and other bacterioplankton[J]. Science of the Total Environment, 2016, 573: 817−825. doi: 10.1016/j.scitotenv.2016.08.150 [49] Liu Lemian, Chen Huihuang, Liu Min, et al. Response of the eukaryotic plankton community to the cyanobacterial biomass cycle over 6 years in two subtropical reservoirs[J]. The ISME Journal, 2019, 13(9): 2196−2208. doi: 10.1038/s41396-019-0417-9 [50] Zappelini C, Karimi B, Foulon J, et al. Diversity and complexity of microbial communities from a chlor-alkali tailings dump[J]. Soil Biology and Biochemistry, 2015, 90: 101−110. (查阅网上资料, 本条文献与第31条文献重复, 请确认) [51] 芦康乐, 武海涛. 三江平原沼泽湿地底栖无脊椎动物群落特征[J]. 中国环境科学, 2020, 40(2): 832−838. doi: 10.3969/j.issn.1000-6923.2020.02.044Lu Kangle, Wu Haitao. Community characteristics of benthic invertebrate in marsh wetlands of the Sanjiang Plain, China[J]. China Environmental Science, 2020, 40(2): 832−838. doi: 10.3969/j.issn.1000-6923.2020.02.044 [52] 程济生, 郭学武. 渤海底栖生物的种类、数量分布及其动态变化[J]. 海洋水产研究, 1998, 19(1): 31−42.Cheng Jisheng, Guo Xuewu. Distribution and dynamic variations of species and quantity of benthos in the Bohai sea[J]. Marine Fisheries Research, 1998, 19(1): 31−42. [53] Yin Shuo, Bai Junhong, Wang Xin, et al. Hydrological connectivity and herbivores control the autochthonous producers of coastal salt marshes[J]. Marine Pollution Bulletin, 2020, 160: 111638. doi: 10.1016/j.marpolbul.2020.111638 [54] 董芮, 王玉玉, 吕偲, 等. 水文连通性对西洞庭湖大型底栖动物群落结构的影响[J]. 生态学报, 2020, 40(22): 8336−8346.Dong Rui, Wang Yuyu, Lü Cai, et al. Effects of hydrological connectivity on the community structure of macrobenthos in West Dongting Lake[J]. Acta Ecologica Sinica, 2020, 40(22): 8336−8346. [55] Castella E, Béguin O, Besacier-Monbertrand A L, et al. Realised and predicted changes in the invertebrate benthos after restoration of connectivity to the floodplain of a large river[J]. Freshwater Biology, 2015, 60(6): 1131−1146. doi: 10.1111/fwb.12565 [56] Palazzi M J, Borge-Holthoefer J, Tessone C J, et al. Macro- and mesoscale pattern interdependencies in complex networks[J]. Journal of the Royal Society: Interface, 2019, 16(159): 20190553. [57] 孙德斌, 栗云召, 于君宝, 等. 黄河三角洲湿地不同植被类型下土壤营养元素空间分布及其生态化学计量学特征[J]. 环境科学, 2022, 43(6): 3241−3252.Sun Debin, Li Yunzhao, Yu Junbao, et al. Spatial distribution and eco-stoichiometric characteristics of soil nutrient elements under different vegetation types in the Yellow River delta wetland[J]. Environmental Science, 2022, 43(6): 3241−3252. [58] 唐诗琴, 王庆, 刘璐, 等. 基于环境DNA宏条形码技术的水体无脊椎动物多样性研究: 以广州海珠湖为例[J]. 湖泊科学, 2023, 35(4): 1443−1456. doi: 10.18307/2023.0437Tang Shiqin, Wang Qing, Liu Lu, et al. Biodiversity of aquatic invertebrates based on environmental DNA metabarcoding technology: a case study of Lake Haizhu in Guangzhou[J]. Journal of Lake Sciences, 2023, 35(4): 1443−1456. doi: 10.18307/2023.0437 [59] 张葵, 周连凤, 陈威, 等. 雅砻江下游大型底栖无脊椎动物群落结构及与环境因子的关系[J]. 中国环境科学, 2023, 43(4): 1857−1866.Zhang Kui, Zhou Lianfeng, Chen Wei, et al. Macroinvertebrates community structure in relation to environmental variables in the lower reaches of the Yalong River[J]. China Environmental Science, 2023, 43(4): 1857−1866. [60] 任海庆, 袁兴中, 刘红, 等. 环境因子对河流底栖无脊椎动物群落结构的影响[J]. 生态学报, 2015, 35(10): 3148−3156.Ren Haiqing, Yuan Xingzhong, Liu Hong, et al. The effects of environment factors on community structure of benthic invertebrate in rivers[J]. Acta Ecologica Sinica, 2015, 35(10): 3148−3156. [61] 孙凌, 金相灿, 杨威, 等. 硅酸盐影响浮游藻类群落结构的围隔试验研究[J]. 环境科学, 2007, 28(10): 2174−2179. doi: 10.3321/j.issn:0250-3301.2007.10.004Sun Ling, Jin Xiangcan, Yang Wei, et al. Effects of silicate on the community structure of phytoplankton in enclosures[J]. Environmental Science, 2007, 28(10): 2174−2179. doi: 10.3321/j.issn:0250-3301.2007.10.004 [62] 钟硕良, 谢联峰, 李文斌. 围头湾潮间带养殖区海水中的硅酸盐[J]. 福建水产, 1986(4): 31−36.Zhong Shuoliang, Xie Lianfeng, Li Wenbin. Silicates in the intertidal aquaculture area of Waihou Bay[J]. Journal of Fisheries Research, 1986(4): 31−36. (查阅网上资料, 未找到对应的英文翻译, 请确认) [63] Reece P F, Richardson J S. Benthic macroinvertebrate assemblages of coastal and continental streams and large rivers of southwestern British Columbia, Canada[J]. Hydrobiologia, 2000, 439(1): 77−89. [64] 吴东浩, 张勇, 于海燕, 等. 影响浙江西苕溪底栖动物分布的关键环境变量指示种的筛选[J]. 湖泊科学, 2010, 22(5): 693−699.Wu Donghao, Zhang Yong, Yu Haiyan, et al. Selection of indicator species of major environmental variables affecting macroinvertebrate communities in the Xitiao Stream, Zhejiang, China[J]. Journal of Lake Sciences, 2010, 22(5): 693−699. [65] 滕瑜, 王印庚, 王彩理. 沙蚕的营养分析与功能研究[J]. 海洋科学进展, 2004, 22(2): 215−218. doi: 10.3969/j.issn.1671-6647.2004.02.014Teng Yu, Wang Yingeng, Wang Caili. Nutritional analysis and function study of Perineries aibuhitensis[J]. Advances in Marine Science, 2004, 22(2): 215−218. doi: 10.3969/j.issn.1671-6647.2004.02.014 [66] Sanders H L. Benthic studies in buzzards bay. I. Animal-sediment relationships[J]. Limnology and Oceanography, 1958, 3(3): 245−258. doi: 10.4319/lo.1958.3.3.0245 [67] Beauger A, Lair N, Reyes-Marchant P, et al. The distribution of macroinvertebrate assemblages in a reach of the River Allier (France), in relation to riverbed characteristics[J]. Hydrobiologia, 2006, 571(1): 63−76. doi: 10.1007/s10750-006-0217-x [68] Yang Zaoli, He Shufeng, Feng Tao, et al. Spatial variation in the community structure and response of benthic macroinvertebrates to multiple environmental factors in mountain rivers[J]. Journal of Environmental Management, 2023, 341: 118027. doi: 10.1016/j.jenvman.2023.118027