2006年1月

# 秋季黄海和东海海域沉降颗粒物及其地球化学组成

倪建宇<sup>1,2,3</sup>.张 美<sup>2,3</sup>.刘小涯<sup>2,3</sup>.林以安<sup>2,3</sup>

(1) 国家海洋局海底科学重点实验室,浙江杭州 310012;2) 国家海洋局 第二海洋研究所,浙江 杭州 310012;

3 国家海洋局海洋生态与生物地球化学重点实验室,浙江杭州 310012)

**关键词:** 沉降颗粒物;地球化学组成;沉降通量;黄海和东海 中图分类号: P722 5,6;P736 4<sup>+</sup>1 **文献标识码:** A **文章编号:** 0253-4193(2006)0+0158 05

### 1 引言

水体中的颗粒物对于海水中物质的迁移有着重 要的作用 已有的研究表明 海水中溶解态元素和颗 粒物之间的相互作用决定了微量元素和常量元素在 海洋中的分布[1]. 虽然近岸水体只占全球海洋表面 的小部分,但河流搬运的陆源物质最终将通过近岸水 体进入外海,目前普遍认为海岸带在物质迁移过程中 起着极为重要的过滤器作用<sup>[2~3]</sup>. 黄海和东海作为具 有宽阔陆架的边缘海、每年大量来自陆地的物质在这 里沉积、迁移、其海域内的沉降颗粒物不仅是陆源入 海物质的主要组成部分,也是人类活动入海污染物的 主要载体.关于黄海和东海海域有机质(POM, POC) 的输入输出通量及其与水体生物活动的关系以及悬 浮颗粒物的分布和输运先后有多个项目对此进行了 详细的研究<sup>[4~6]</sup>,但有关沉降颗粒物中微量元素的研 究不多,且主要局限于各个主要河流的河口地区[7]和 冲绳海槽一带<sup>[8-9]</sup>以及东海北部<sup>[10]</sup>,本文将主要讨论 2000 年秋季 黄海和东海海域沉降颗粒物中常量元素 和微量元素的分布特征,并计算其沉降诵量,

### 2 样品采集和分析

样品采自 2000 年"东方红 2"号科学考察船秋 季航次(10月 15 日至 11 月 7 日),采样站位见图 1 和表 1. 采用自行设计的颗粒物捕获器分层收集沉 降颗粒物,为了能采集足够用于分析的沉降颗粒物, 我们主要采集了该航次 5 个连续站的样品.采样器 在投放前,收集杯内装满采用 0 45 μm 醋酸纤维滤 膜过滤的站位处表层海水,捕获器回收后,经挑拣出 可见的生物碎片和遗骸后,把收集的颗粒物离心分 离(4 000 r/min),并用亚沸蒸馏水脱盐后 60 ℃下 干燥至恒重定质量,分析前进一步碾磨混匀后称取 约 0. 100 g 样品,经三酸法(HNO3+ HCIO4+ HF) 硝化 后采用 ICPAES (TLASMA STEGI,美国 Leeman 公司)在浙江大学分析测试中心分析了钙、



图 1 2000 年秋季(10 月)黄海和东海生态系统 动力学航次连续站分布图

收稿日期: 2004-03-19; 修订日期: 2005-06-13

基金项目:国家重点基础研究发展规划资助项目(G1999043704);国家自然科学青年基金资助项目(40206012).

作者简介:倪建宇(1969一),男,江苏省靖江市人,研究员,博士,从事海洋化学和海洋环境地球化学研究.E-mail: jianyuni@sio.zj.edu.en

铁、镁、钾、钠、钛和磷等常量元素以及锰、铬、镍、铜、 钡、锶、钒和钴等微量元素,采用双样和 EMS-1 近海 海洋沉积物标样控制分析精度,钾、钠、钙、锰、铁的 分析精度为 2 0%,其余元素为 3 5%,分析结果见 表 2

### 3 结果和讨论

黄海和东海每年从长江和黄河等入海径流接受 大量的泥沙(大于1.6 Gt/a)<sup>[11]</sup>,这些泥沙中的大部 分将沉积在大陆架,其余部分将被输送到大陆斜坡、 冲绳海槽. 黄海和东海海流系主要由沿岸流和外海流组成,黄海沿岸流和闽浙沿岸流沿岸由北向南,西太平洋的暖流──黑潮沿陆架边缘由南向北流经东海,其分支黄海暖流可深入到南黄海,黑潮分支和南海暖流汇合的台湾暖流向北入侵东海直至长江口外. E1 到 E2 站位均处于黄海沿岸流内,而 E3 站位则处于黄海沿岸流的锋面,E4 站受长江径流和闽浙沿岸流的影响,而 E7 站则受台湾暖流的控制.

#### 31 沉降颗粒物的分布

从表1和图2可见,颗粒物在向海方向上其沉

| 站位 | 位置                                     | 水深/m  | 层次/ m | 颗粒物量/g | 布放时间/h | <b>沉降通量</b> /g・m⁻²・d⁻¹ |  |  |  |
|----|----------------------------------------|-------|-------|--------|--------|------------------------|--|--|--|
| E1 | 35°00 16 N                             | 38 0  | 15    | 1.786  | 22 5   | 53 9                   |  |  |  |
|    | 121°00. 88′ E                          |       |       |        |        |                        |  |  |  |
| E2 |                                        | 75 2  | 20    | 0 055  | 36 0   | 1. 0                   |  |  |  |
|    | 34°29 67 N                             |       | 40    | 0 024  |        | 0 5                    |  |  |  |
|    | 125 05. 81 E                           |       | 55    | 1.510  |        | 28 5                   |  |  |  |
| E3 | 32° 30 22 N                            | 41. 9 | 20    | 14 436 | 20 0   | 490 1                  |  |  |  |
|    | 123 59. 88' E                          |       | 30    | 32 883 |        | 1116 5                 |  |  |  |
| E4 | 31°00 0Í N                             | 21. 3 | 7     | 5 414  | 21. 0  | 175 1                  |  |  |  |
|    | 122 <sup>°</sup> 37. 96 <sup>′</sup> E |       | 14    | 9 158  |        | 296 1                  |  |  |  |
| E7 | 29°24 84 N                             | 81.6  | 20    | 0 009  | 23 0   | 0 3                    |  |  |  |
|    | 125°04. 86′ E                          |       | 35    | 0 031  |        | 09                     |  |  |  |
|    |                                        |       | 50    | 0 021  |        | 0 6                    |  |  |  |
|    |                                        |       | 70    | 0 400  |        | 11.8                   |  |  |  |

表1 黄海和东海海域采样站位及沉降通量

降通量呈降低趋势,而在同一站位,从表层到底层呈 大幅度的增加:在各个站位中,E3站位的颗粒物沉 降通量最高,这种空间分布特征主要与黄海和东海 海域不同海流的相互作用是分不开的、孙效功 等<sup>[12]</sup> 根据遥感图像分析发现。秋季黄海沿岸流由北 向南流达长江口外,来自苏北近岸的高沉降颗粒含 量的表层水在黄海沿岸流的携带下向东南迁移,10 月中旬其峰面可达 70 m 等深线 而此时台湾暖流 由南向北流入东海, 最远可达黄海南部, 而 E3 站位 正是这些海流交汇之处,导致黄海沿岸流携带的大 量泥沙在此沉降,因此 E3 站位也是颗粒物沉降通量 最大的地方.计算结果表明.E3 站位次表层和近底层 的沉降通量分别为 490 1 和 1 116 5 g/(m<sup>2</sup> • d). 对 干同一站位,其近底层的沉降通量要远大干其他层 次的沉降通量,这说明可能受到海底沉积物发生再 悬浮而使得大量颗粒再次进入水体发生沉降的影

响<sup>[13]</sup>.

#### 3 2 颗粒物的地球化学组成

黄海和东海海域沉降颗粒物主要来自河流搬运 和风力搬运的陆源碎屑、生物活动所形成的生物碎 屑以及生物排泄物(如粪团等),由于不同来源的物 质在化学组成上存在着一定的差异,因此颗粒物的 化学组成将是这些物源的综合体现,以下分别讨论 其分布特征.

#### 321 常量元素

从表2可见,这些元素在空间分布上可分为两 类,一类表现为各站之间变化不大,这些元素有钠、 钛、铁,它们除了在E7站含量较低外,其余各站的 含量变化不大;另一类则具有明显的空间分布,如钙 和镁表现为由北向南呈增加趋势;钾的含量则表现 为由北向南呈降低的趋势.由于黄海和东海海域主 要接受来自长江和黄河所搬运的陆源碎屑物,它们



图 2 颗粒物沉降通量

的空间分布特征反映了其来源上的差异性[14~15].

| 站位                                       | E 1   | E2      | E3    |       | E4    |       | E7    |
|------------------------------------------|-------|---------|-------|-------|-------|-------|-------|
| <b>水</b> 深/ m                            | 15    | 55      | 20    | 30    | 7     | 14    | 70    |
| C a(%)                                   | 2 04  | 1 83    | 2 95  | 2 68  | 3 00  | 3 12  | 2 03  |
| Fe(%)                                    | 4 11  | 4 63    | 3 68  | 3 07  | 3.83  | 3 35  | 1.52  |
| Mg(%)                                    | 1.54  | 1 81    | 1. 57 | 1. 29 | 1.60  | 1.46  | 2 64  |
| K(%)                                     | 2 29  | 2 54    | 2 15  | 1. 24 | 2 20  | 2 02  | 1.29  |
| Na(%)                                    | 1.02  | 0 80    | 1. 83 | 1. 50 | 1.57  | 1.62  | 0.91  |
| T i(%)                                   | 0 42  | 0 41    | 0 39  | 0 33  | 0 41  | 0 38  | 0 10  |
| $P/\mu_g \bullet g^{-1}$                 | 850   | 890     | 8 18  | 765   | 848   | 735   | 253   |
| $Mn/\mu g \bullet g^{-1}$                | 1 845 | 1 4 3 0 | 808   | 645   | 910   | 720   | 275   |
| Cr/ µg• g-1                              | 48 8  | 64.3    | 53.0  | 36 5  | 50 5  | 47.0  | 44 4  |
| Ni/ $\mu_g \bullet_{g^{-1}}$             | 40 5  | 47.3    | 32.5  | 28 0  | 41.3  | 48 5  | 15 4  |
| Cu/ $\mu$ g • g <sup>-1</sup>            | 35.3  | 29.0    | 24 8  | 24 0  | 34 5  | 25.5  | 14 4  |
| Ba/ $\mu$ g• g-1                         | 532 5 | 435.0   | 370 0 | 337.5 | 397.5 | 375.0 | 100 0 |
| $\operatorname{Sr}/\mu_{g} \cdot g^{-1}$ | 146 5 | 145.3   | 171.3 | 152 8 | 153 0 | 158 5 | 206 4 |
| $V/\mu g \bullet g^{-1}$                 | 180 5 | 215 5   | 179.8 | 153 3 | 195 8 | 176 8 | 118 9 |
| Co/µg • g- 1                             | 23 0  | 25.3    | 22.8  | 22 5  | 27.3  | 25.5  | 12 1  |

表 2 沉降颗粒物中常量元素和微量元素分析结果

#### 322 微量元素

在外海海域, 海水中的钡、磷、铜和镍这些元素 主要与生物活动有关. 从表 2 可见, 钡的含量为 100 0~532 5  $\mu$ g/g; 磷的含量为253~890  $\mu$ g/g; 铜 的含量为 14.4~35.3  $\mu$ g/g; 镍的含量为 15.4~ 48 5  $\mu$ g/g.除了钡从近岸向外海、从表层向底层呈 降低趋势的碎屑源的特点外, 其余元素均在 E7 站 位出现低值, 而在其他站位之间变化较小.

锰和钒为变价元素,其存在形式主要受氧化还

原环境的控制. 在氧化性水体中锰主要以锰的氧化物、氢氧化物壳膜的形式搬运, 而钒则主要为铁锰氧化物、黏土类矿物所吸附的形式搬运. 铬主要以类质同象的形式存在于氧化物和硅酸盐矿物中, 钴主要以黏土吸附和金属有机络合物的形式存在. 从表 2 可见, 锰的含量为 275~1 845  $\mu$ g/g; 钒的含量为 118 9~215.5  $\mu$ g/g, 各站之间变化较小. 铬的含量为 36.5~64.3  $\mu$ g/g; 钴的含量为 12.1~27.3  $\mu$ g/g. 它们除在 E7 站位出现低值外, 在其他站位之间变化较小.

表 3 方差最大化旋转后的因子得分表

| 因子      | 1       | 2       | 3       |
|---------|---------|---------|---------|
| 方差贡献(%) | 67.7    | 19.8    | 7.4     |
| Sr      | - 0 953 | - 0 194 |         |
| Ba      | 0 939   | 0 294   |         |
| Р       | 0 883   | 0 365   | 0 218   |
| Тi      | 0 872   | 0 413   | 0 253   |
| Cu      | 0 871   | 0 302   |         |
| Mg      | - 0 841 |         | - 0 499 |
| Fe      | 0 810   | 0 566   |         |
| Co      | 0 782   | 0 419   | 0 413   |
| Mn      | 0 781   | 0 320   | - 0 481 |
| Ni      | 0 680   | 0 592   | 0 153   |
| Cr      | 0 118   | 0 945   | - 0 270 |
| Κ       | 0 511   | 0 828   |         |
| V       | 0 663   | 0 730   |         |
| Са      |         |         | 0 983   |
| Na      | 0 121   |         | 0 960   |

#### 3 3 各元素之间的统计分析

为了揭示各元素之间的相互关系,我们采用主 成分分析法对其进行了因子分析,经方差最大化旋 转后各因子的得分结果见表 3. 从表 3 可见,三个因 子共解释了所有变量 94 9% 的变化.因子 1 由锶、 钡、磷、钛、铜、镁、铁、钴、锰和镍组成.由于沉积物和 颗粒物中的钛主要来自岩石碎屑,且不受生物活动 的影响,因此常被用来作为陆源碎屑的量化标 志<sup>[16]</sup>,上述元素和钛构成因子 1,说明这些元素可能 主要来自陆源碎屑,且该因子与锶和镁等主要以碳 酸盐形式存在的元素呈负相关关系,而与铁和锰等 主要以氧化物、氢氧化物形式存在的元素呈正相关 关系,这表明研究区域内的颗粒物中微量元素主要 以非碳酸盐的形式存在.因子 2 由铬、钾和钒组成; 因子 3 由钠和钙组成. 赵一阳等<sup>[14-15]</sup>的研究表明, 长江沉积物以富含钛、铁、锰、铅、钴、镍、钒和铬为特 点, 而黄河沉积物以高钙、钠和锶为特征, 因此, 研究 区域内颗粒物的地球化学组成可能更多地受来自长 江所搬运的沉积物的影响.

34 各金属元素的相对富集

为了讨论各金属元素的相对富集,我们定义了 相对富集系数(EF),即沉降颗粒物中某元素与钛的 含量比[(M/Ti)/与土壤中该元素与钛的含量比  $[(M/Ti)_{sai}$ ]之比.研究表明,海水中颗粒物在沉降 时将吸附一定量的溶解态铝,使采用铝作为陆源碎 屑的量化指标时将产生一定的偏差<sup>[16]</sup>,因此我们采 用钛作为量化指标:

$$EF = (M/T i) \operatorname{sp}/(M/T i) \operatorname{soil.} (1)$$

由于我国近海中的沉降颗粒物主要来自黄河、 长江、珠江等大中型河流,而这些河流所搬运的沉积 物的组成主要与这些河流流域内的岩石类型有 关<sup>[77]</sup>,因此我们相对于我国土壤背景值<sup>[17]</sup>来讨论颗 粒物中各元素的相对富集.根据式(1)计算的富集系 数见表 4,通常认为富集系数的值为 0 5~ 1.5,金属 元素与背景值相当,而它的值大于 1.5 则认为金属 元素相对富集,小于 0.5 则相对亏损<sup>[7]</sup>.

从表 4 可见, *E*7 站除钡以外的其他元素在近底 层的颗粒物中明显富集. 锰主要在 *E*1 和 *E*2 站富 集, 钴和钒则在所有的站位富集, 这些元素的地壳丰 度值相对都较低<sup>(18)</sup>, 因此推测这些元素主要受人类 活动的影响. 钡、铬、铅、铁、镍和锶在大部分站位表 现为相对亏损或弱富集的特点.

表 4 沉降颗粒中微量元素的富集系数(EF)

| 站位    | E1   | E2   | F     | 23    | F     | 24   | E7   |
|-------|------|------|-------|-------|-------|------|------|
| 水深/ m | 15   | 55   | 20    | 30    | 7     | 14   | 70   |
| Fe    | 1.27 | 1.46 | 1. 23 | 1. 20 | 1. 20 | 1.15 | 1.95 |
| Mn    | 2 89 | 2 27 | 1.36  | 1. 27 | 1.44  | 1.25 | 1.78 |
| Cr    | 0 73 | 0 97 | 0.85  | 0 69  | 0 76  | 0 78 | 2 75 |
| Ni    | 1.37 | 1.62 | 1. 19 | 1.19  | 1.42  | 1.82 | 2 16 |
| Cu    | 1.42 | 1.18 | 1. 08 | 1. 22 | 1.41  | 1.14 | 2 40 |
| Ba    | 1.04 | 0 86 | 0.78  | 0 82  | 0 78  | 0 81 | 0 81 |
| Sr    | 0 80 | 0 80 | 1. 01 | 1.05  | 0 85  | 0 96 | 4 67 |
| V     | 2 00 | 2 42 | 2.14  | 2 13  | 2 19  | 2 16 | 5 45 |
| Со    | 1.65 | 1.84 | 1. 76 | 2 03  | 1. 98 | 2 03 | 3 61 |

### 4 结论

本文的研究表明,秋季黄海和东海海域的沉降 颗粒物含量主要受海区内不同水团的混合作用以及 海底表层沉积物再悬浮作用的控制,其沉降颗粒物 的含量以及沉降通量均表现为在水团混合最强烈的 E3 站位出现高值.

与我国土壤的化学成分相比, 黄海和东海海域 沉降颗粒物中的钡、铬、铜、铁、镍和锶在大部分站位 表现为相对亏损或弱富集而锰、钴和钒等则相对富 集的特征.

因子分析表明,沉降颗粒物的地球化学组成呈现出以陆源碎屑来源为主的特征,受长江搬运的沉积物的影响明显,而碳酸盐等自生组分则不是其主要构成.

笔者感谢"东方红2"号所有船员和全体考察队员在样品采集期间所给予的帮助和支持!

#### 参考文献:

- BRULAND K W. Trace elements in seaw ater[A]. RILEY JP, CHESTER R. Chemical Ocean og raphy: Vol. 8[M]. London: Academic Press, 1983. 157-220.
- [2] STATHAM P J, LECLERCQ S, HART V, et al. Dissolved and particulate trace metal fluxes through the central English Channel, and the influence of coastal gyres [J]. Cont Shelf Res, 1999, 19:2019-2040.
- [3] ZWOLSMANJJG, van ECKGTM. Geochemistry of major elements and trace metals in suspended matter of the Scheldt estuary, southwest Netherlands [J]. Mar Chem, 1999, 66:91-111.
- [4] ISEKIK, OKAMURAK, KIYOMOTOY. Seasonality and composition of downward particulate fluxes at the continental shelf and Okinawa Trough in the East China Sea[J]. Deep-Sea Res(II), 2003, 50: 457-473.
- [5] 庞重光,白 虹,杨作升,等.东海泥质和砂质沉积区悬浮物垂向分布的季节变化特征[J].海洋科学,2001,25(8):34-37.
- [6] 郭志刚,杨作升,张东奇,等.冬、夏季东海北部悬浮体分布及海流对悬浮体输运的阻隔作用[J].海洋学报,2002,24(5):71-80.
- [7] ZHANG J, LIU CL. Riverine composition and estuarine geochemistry of particulate metals in China weathering features, anthropogenic impact and chemical fluxes[J]. Estuarine Coastal and Shelf Science, 2002, 54: 1 051-1 070.
- [8] KATAYAMAA H, WATANABE Y. The Huanghe and Changjiang contribution to seasonal variability in terrigenous particulate load to the Okinawa Trough[J]. Deep Sea Res (II), 2003, 50: 475-485.

- [9] HUNG J J, LIN C S, HUNG G W, et al. Lateral transport of lithogenic particles from the continental margin of the southern East China Sea[1]. Estuarine Coastal & Shelf Sciences, 1999, 49:483-499.
- [10] 詹滨秋,黄华瑞,庞学忠,等.颗粒物质和微量金属在东海北部的沉积通量[J].海洋与湖沼,1993,24(1):51-58.
- [11] MILLIAN J D, MEADER H. Worldwide delivery of river sediment to the oceans [J]. J Geology, 1983, 91: 1-21.
- [12] 孙效功,方 明,黄 伟. 黄、东海陆架区沉降体输运的时空变化规律[J]. 海洋与湖沼,2000,31(6):581-587.
- [13] HOSHIKA A, TANIMOTOA T, MISHIMAA Y, et al. Variation of turbidity and particle transport in the bottom layer of the East China Sea[J]. Deep-Sea Res (II), 2003, 50: 443-455.
- [14] 赵一阳, 鄢明才.黄河、长江、中国浅海沉积物化学元素丰度比较[J].科学通报, 1992, 37(13):1 202-1 204.
- [15] 赵一阳, 鄢明才. 中国浅海沉积物地球化学[M]. 北京: 科学出版社, 1994. 203.
- [16] MURRAY R W, LEINEN M. Scavenged excess alum inum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean [J]. Geochimica Cosmochimica Acta, 1996, 60(20): 3 869-3 878.
- [17] 魏复盛,陈静生,吴燕玉,等.中国土壤环境背景值研究[J].环境科学,1991,12(4):12-19.
- [18] TAYLOR S R, MCLENNAN S M. The Continental Crust: Its Composition and Evolution [M]. Malden, MA: Blackwell, 1985, 312.

## Sinking particles and their geochemical compositions in the Huanghai and East China Seas in autumn

N I Jian-yu<sup>1, 2, 3</sup>, ZH A N G Mei<sup>2, 3</sup>, LIU Xiao-ya<sup>2, 3</sup>, LI Y $\div$ an<sup>2, 3</sup>

(1. Key Laboratory of Submarine Geosciences of State Occanic A dministration, Hangzhou 310012, China; 2 Second Institute of Oceanography, State Occanic A dministration, Hangzhou 310012, China; 3. Laboratory of Marine Ecosystem and Biogeochemistry of State Oceanic A dministration, Hangzhou 310012, China)

Key words: sinking particles; composition; sediment flux; Huanghai and East China Seas