徐恒振马永安尚龙生周传光李 洪 姚子伟 张国光 孙育红 吴之庆 杨庆霄

(国家海洋环境监测中心、大连 116023)

摘 要 应用灰色系统理论对海面溢油物理化学性质(蒸发率、溶解率、表面张力、黏 度和密度)在风化过程中的变化进行研究,建立了溢油物理化学性质在风化过程中的 预测模式 GM(1,1) 和 GM(0,m). 结果表明,在风化过程中, 溢油物理化学性质的 GM(1,1)和 GM(0,m)模式预测精度令人满意,皆符合统计学检验的要求;在风化 过程中,溢油物理化学性质所具有的灰色相关性可用 GM(0,m)模式的灰色辨识参 数来表征;在风化过程中,溢油的蒸发率和溶解率可分别用表面张力、黏度和密度作 为预报因子.

关键词 溢油 风化 物理化学性质 GM(1,1) GM(0,m)中图分类号: 064

1 引言

溢油进入海洋环境后,受风、浪、流、光照、水温以及生物活动的影响,其物理化学性质(简称 物化性质.本文主要研究溢油的蒸发率、溶解率、表面张力、黏度和密度)将随着时间不断发生变 化,通常把这些变化称为溢油风化,将其变化过程称为溢油风化过程.溢油风化过程主要包括蒸 发、溶解、乳化、光化学氧化、吸附沉降以及微生物降解等^[1],溢油的早期风化过程主要是蒸发, 同时溶解和乳化也随即开始,当然其他风化过程亦开始进行,仅是相对缓慢些而已^[2].杨庆霄 等[3]分别对溢油蒸发、溶解过程[4]以及溢油风化过程中物理性质(表面张力、黏度以及密度)的变 化[5]进行了研究,为溢油风化研究提供了基础性资料.实际上,溢油某种风化现象的出现,通常 是多种风化因素综合作用的结果,欲精确区分各风化因素到底起多大作用是比较困难的:并且风 化测试值是非连续的,不能确知测试时刻以外时段的风化值,仅对已测试的风化值尚具有随机 性. 鉴于此,徐恒振等^[6]将溢油风化过程喻为溢油风化灰色系统,并将 GM(1,1)模式应用于海面

2000-11

本文于 1999 年-06-16 收到,修改稿于 1999-09-01 收到.

^{*} 国家自然科学基金资助项目(编号:29777004).

第一作者简介:徐恒振,男,42岁,研究员,学士,从事海洋环境化学研究.

石油烃(烷烃类)的风化预测研究,其预测精度优于一维统计模式.基于灰色预测模式具有高精度的特点,本文对溢油风化过程中蒸发率、溶解率、表面张力、黏度以及密度等物化性质进行同步测定,应用 GM(1,1)模式对各因子的变化进行预测,同时建立溢油蒸发率和溶解率分别与表面张力、黏度以及密度间的 GM(0, m)模式,以期得到客观表征溢油物化性质在蒸发和溶解过程中变化的灰色模式,为进一步研究溢油的海洋环境行为提供基础资料.

2 材料和方法

2.1 分析方法和风化实验

气相色谱仪 GC-7A(岛津, 配 FID), OV-101 石英毛细管柱 60 m×0.31 mm. GC/MS 操作条件:柱温为 45~270℃, GC/MS-80, 电离电压 70 eV. JZHY₁-180 表面张力仪、GB₂₆₅-75 运动黏度测器、501 型超级恒温器、恒温槽.

表面张力测定采用 SY₂₂₀₆ - 77 表面张力测定法, 黏度测定采用 GB₂₆₅ - 83 石油产品运动 黏度测定法和 SY₂₄₀₉ - 75 深色石油产品黏度测定法(逆流法)、SY₂₂₀₆ - 76 石油产品密度测定法, 溢油的蒸发率和溶解率由 GC - FID 和 GC/MS 测定.

实验室模拟风化实验是在蔽光暗室内进行的,风化装置系由风化槽、恒温水槽、循环泵、风 扇、日光灯、油样培养缸等组成,油样放在盛5 dm³海水的培养缸内风化,可对水温、水流、风 速、光照等条件进行自动控制.

海上风化实验在大连附近海湾内进行,围油栏由3个直径为50 cm 铁架、聚乙烯塑料袋及 浮球组成,每个架下用重锤固定,水下部分约为3 m,开口,水上部分约高0.5 m,防止风浪刮走 油膜,油膜厚3~5 mm.

海面油样由牛角药匙采集,置于 10 cm³ 离心管内,离心机高速离心后用注射器抽出下层水,加入无水 Na₂SO₄ 再离心,取上层油样,用正己烷萃取后待 GC - FID 和 GC/MS 测定;水中溶解油 样系由 1 dm³ 的闭—开式水中油采样器原瓶采集,用正己烷萃取后待 GC - FID 和 GC/MS 测定. 2.2 溢油风化过程中物化性质的灰色模式简介^[6~9]

设溢油的 m 个物化性质(蒸发率、溶解率、表面张力、黏度以及密度等)为 X_i (i = 1, 2, ..., m),对溢油风化过程中物化性质 X_i 的原始数据序列 $X_i^{(0)}(t) = \{X_i^{(0)}(1), X_i^{(0)}(2), ..., X_i^{(0)}(n)\}$ 在不同时刻 t 的测值作一次累加(1 – AGO),即 $X_i^{(1)}(t) = \{X_i^{(1)}(1), X_i^{(1)}(2), ..., X_i^{(1)}(n)\} = \{X_i^{(0)}(1), X_i^{(1)}(1) + X_i^{(0)}(2), ..., X_i^{(1)}(n-1) + X_i^{(0)}(n)\}, 其中 <math>i = 1, 2, ..., m$ 为所选定的 m 个物化性质, $t = 1, 2, ..., n, X_i^{(1)}(t)$ 为第 i 个物化性质风化 t 时刻的累加值. 对其分别建立 GM(1,1) 模式:

 $\frac{\mathrm{d}x_i^{(1)}(t)}{\mathrm{d}t} + ax_i^{(1)}(t) = u, \qquad (1)$

式中,a,u为灰色参数. GM(0,m)模式:

式(2)的解为

$$\hat{x}_{i}^{(1)}(t) = b_{1}X_{2}^{(1)}(t) + b_{2}X_{3}^{(1)}(t) + \dots + b_{m-2}X_{m-1}^{(1)}(t) + a_{0}.$$
 (4)

由式(3)和(4)取得的预测值是溢油风化过程中物化性质的累加值,尚需经过还原处理,即经累减生成,得溢油风化过程中物化性质原始数据列的预测值 $\frac{\Lambda}{x}^{(0)}(t)$:

$$\hat{x}_{i}^{(0)}(t) = \{ \hat{x}_{i}^{(0)}(1), \hat{x}_{i}^{(0)}(2), \cdots, \hat{x}_{i}^{(0)}(n) \} = \{ \hat{x}_{i}^{(1)}(1) - \hat{x}_{i}^{(1)}(0), \\ \hat{x}_{i}^{(1)}(2) - \hat{x}_{i}^{(1)}(1), \cdots, \hat{x}_{i}^{(1)}(n) - \hat{x}_{i}^{(1)}(n-1) \},$$
(5)

式中, $x_{i}^{(1)}(0) = 0$, $x_{i}^{(1)}(1) = x_{i}^{(0)}(1)$. 然后对模型精度进行检验, 检验方法有后验差检验法 和相对误差检验法, 后验差检验法的指标有后验差比值:

$$C_i = S_{i1} / S_{i2}, (6)$$

式中, S_i1 为残差均方差; S_{i2} 为原始数据均方差; C_i 为其比值. 小概率误差:

$$P_i = P_i \{ | \epsilon_i(t) - \epsilon_i | < 0.674 \, 5S_{i2} \}, \tag{7}$$

式中, $\epsilon_i(t)$ 为 t 时刻的残差; ϵ_i 为残差均值; P_i 为小误差概率.

通常对外推性好的预测, *C_i*必须小. *C_i*小说明*S_{i1}*小而 *S_{i2}*大. *S_{i2}*大说明溢油物化性质测 值离散性大,或者说原始数据摆动幅度大,即原始数据规律性差. *S_{i1}* 代表预测均方差, *S_{i1}* 小 说明预测误差离散性小. 因此,作为综合指标 *C_i*越小越好. *C_i*小说明尽管原始数据规律性差, 但预测误差摆动幅度不大. 一般要求 *C_i* < 0.35,最大不超过 0.65.

预测外推性好的另一个指标是小误差概率 P_i 大.由式(7) 知,小误差是指偏差 $e_i = 1$ $\epsilon_i(t) - \epsilon_i < 0.6745S_{i2}$,或者说相对偏差 $|\epsilon_i(t) - \epsilon_i| / S_{i2} < 0.6745$.用相对偏差比用绝 对偏差合理一些,因为 S_{i2} 大,则允许偏差绝对值 $|\epsilon_i(t) - \epsilon_i|$ 也大一些.一般要求 $P_i > 0.95$, 不得小于 0.7.按 P_i 和 C_i 的大小,可对模型精度作出评价(表 1).

相对误差检验法的指标采用点检验的相对误 差法,即

$$q_i = \frac{\frac{x_i^{(0)}(t) - x_i^{(0)}(t)}{x_i^{(0)}(t)} \times 100 .$$
 (8)

 q_i 的绝对值愈大,预测精度愈差; $q_i > 0$,预测值大于实测值; $q_i < 0$,预测值小于实测值; $q_i = 0$,两者相等。

表1	模型精度检验等级	ż
----	----------	---

预测模型精度	检验等级	
	P _i	C,
好	>0.95	<0.35
合格	>0.80	<0.5
勉强	>0.70	< 0.65
不合格	≪0.70	≥0.65

3 结果和讨论

3.1 溢油风化过程中物化性质的变化

以渤海原油和辽河原油作为风化实验油品,并假设为溢油.在海上半个月的风化过程中, 渤海原油和辽河原油的物化性质测值分别列于表 2 和表 3(水温 20℃,风速 4.7 m/s).可以看 出,海上风化半个月,两种油的蒸发率和溶解率皆随表面张力、黏度和密度的增加而增大,其 中,黏度增加较大,密度增加较小;渤海原油的蒸发率和溶解率较辽河原油的蒸发率和溶解率

表 2	渤海原油海上	风化 15 d	物化性质的	的变化
-----	--------	---------	-------	-----

皮具	风化时	表面张力	黏度	密度	蒸发	溶解
庁ち	间/d	$/ \times 10^{-3} \text{N} \cdot \text{m}^{-1}$	/Pa·s ⁻¹	$/g \cdot cm^{-3}$	率(%)	率(%)
1	0	46.2	16.6	0.948	0	0.00
2	1	47.5	24.8	0.958	3	0.06
3	2	48.8	27.5	0.960	5	0.17
4	3	49.1	28.8	0.961	7	0.32
5	4	49.2	33.5	0.961	9	0.48
6	5	49.2	34.0	0.961	10	0.68
7	6	49.3	35.5	0.962	11	0.89
8	7	49.4	36.9	0.962	11	1.13
9	8	49.5	37.1	0.962	11	1.38
10	9	49.8	37.8	0.963	12	1.64
11	10	51.0	38.1	0.963	12	1.92
12	11	51.5	39.0	0.964	13	2.22
13	12	52.5	40.5	0.964	13	2.53
14	13	53.0	41.5	0.965	13	2.95
15	14	53.5	42.5	0.965	14	3.18
16	15	53.7	43.7	0.965	14	3.55

表 3 辽河原油海上风化 15 d 的物化性质变化

山	风化时间	表面张力	黏度	密度	蒸发率	溶解率
厅厅	/d	$/ \times 10^{-3} \mathrm{N \cdot m^{-1}}$	/Pa•s ⁻¹	$/g \cdot cm^{-3}$	(%)	(%)
1	0	41.0	0.238	0.915	0	0.00
2	1	41.3	1.90	0.932	4	0.07
3	2	41.5	2.60	0.933	7	0.20
4	3	41.5	3.15	0.934	10	0.36
5	4	41.6	3.40	0.935	12	0.56
6	5	41.8	3.70	0.936	13	0.78
7	6	41.9	3.85	0.937	13	1.03
8	7	42.0	4.10	0.938	14	1.29
9	8	42.5	4.60	0.939	14	1.58
10	9	43.0	4.90	0.939	15	1.88
11	10	43.3	5.20	0.940	15	2.21
12	11	43.5	5.25	0.940	16	2.55
13	12	43.8	5.30	0.940	16	2.90
14	13	44.5	5.40	0.941	17	3.27
15	14	44.8	5.50	0.941	17	3.66
16	15	45.1	5.52	0.941	17	4.05

小, 而表面张力、黏度和密度却较辽 河原油的大.

3.2 溢油风化过程中物化性质的 预测模式 GM(1,1)

分别将表 2 和表 3 中两种油风 化 0~14 d 的各物化参数测值作为 原始数据列 $X_i^{(0)}(t)$ (其中, i = 1, 2, …, 5; t = 0, 1, ..., 14) 进行 GM(1,1)建模,风化 15 d 的数据用 于 GM(1,1)模式精度的检验.两 种油的 GM(1,1)参数 a, u 分别列 于表 4. 由表 4 可知,渤海原油和辽 河原油各物化性质的 a 和 u 值不 同. a 和 u 值决定了各物化性质在 风化过程中的变化速率,用 a 和 u值可以作为溢油的指标因子表征油 种. 这里称 a 和 u 为溢油在风化过 程中物化性质的灰系数.通常 a 愈 小, u/a愈大,风化速率愈大.

_ 將表4中a值和u值分别代入 式(3),求得溢油各物化性质在不同 风化时刻一次累加值的预测值,再 由式(5) 求得溢油各物化性质不同 风化时刻 t 的预测值,其结果分别 列入表5和表6(其单位分别同于表 2.3). 由表 2.3.5.6 中的 $X_{i}^{(0)}(t)$ 及其预测值求得各物化性质 GM(1,1) 模式的预测相对误差 a. 和预测精度检验参数后验差比值 C_i ,小误差概率中的 $e_i = |\epsilon_i(t)$ ε, I, 再由 e; 值和 0.674 5 S_{i2} 求得 小误差概率 P. 值, 一并列入表5和 表 6. 由表 5,6 可以看出,渤海原油 蒸发率的 GM(1,1) 模型精度为 "合格",其溶解率、表面张力、黏度

和密度的 GM(1,1) 模型精度为"好",即一级.对辽河原油而言,其中表面张力、黏度和密度的 GM(1,1) 模型精度,从后验差检验的两个指标 C; 和 P; 来看皆为 "好",即一级; 其溶解率由

 油名	参数	蒸发率(%)	溶解率(%)	表面张力/×10 ⁻³ N·m ⁻¹	黏度/Pa·s ⁻¹	密度/g·cm ⁻³
渤海原油	a	$-5.683 4 \times 10^{-2}$	- 0.172 92	-7.9979×10^{-3}	-3.3302×10^{-2}	-4.7275×10^{-4}
	u	6.632 1	0.397 26	47.105 9	27.3597	0.958 59
辽河原油	а	$-5.7912 imes 10^{-2}$	- 0.181 71	-6.4139×10^{-3}	$-5.967 3 \times 10^{-2}$	$-7.520 \ 8 \times 10^{-4}$
	u	8.552 2	0.404 74	40.493 7	2.6927	0.931 88

表4 渤海原油和辽河原油的 GM(1,1) 灰色参数 a 和 u

C_i 看为"好",即一级,而从 *P_i* 看则为"合格",即二级;蒸发率的 *GM*(1,1) 模型精度为"合格". 另外,由点检验的相对误差 *q_i* 来看,各预测值精度皆是可以接受的. 总之, 渤海原油和辽河原 油各物化性质的 *GM*(1,1) 模型精度尚可.

由于所建立的 GM(1,1) 模型各参数 a 和u 是以 0 ~ 14 d内的各物化性质的 $X_i^{(0)}(t)$ (其中 $t = 0, 1, 2, \cdots, 14$) 进行建模所得到的,为进一步证实模型预测精度,将其各物化性质海上风化 15 d的预测值亦列入表 5 和表 6 中,并通过表 2 和表 3 中渤海原油和辽河原油各物化性质 15 d的实测值,计算出预测相对误差,列于表 5,6 中.可见用所建立的 GM(1,1) 模式对海上溢油风化过程中的物化性质进行预测,其相对误差多数在 10% 以内,少数在 40% 以内,这表明用 GM(1,1) 模式预测风化过程中溢油的物化性质是可行的.欲进一步提高其预测精度,可按 残差进一步建模,以修正原模式^[7~9],有关这方面的研究尚需探讨.

风化天	蒸发	蒸发率(%)		溶解率(%)		表面 × 10	表面张力/ ×10 ⁻³ N·m ⁻¹		黏度/Pa・s ⁻¹		密度/g·cm ⁻³				
数/d	预测值	q	e	预测值	li q	е	预测值	İ q	е		直 q	е	预测值	q	e
0	0		0.09	0		0.27	46.2	0	0.27	16.6	0.0	0.15	0.9480	0	0.00
1	6.82	12.75	3.91	0.434	623	0.10	47.7	0.35	0.47	28.4	14.4	3.45	0.9593	0.14	0.001 3
2	7.23	44.6	2.81	0.515	203	0.08	48.1	-1.5	0.43	29.3	6.7	1.65	0.9597	-0.03	0.000 3
3	7.64	9.2	0.73	0.613	91.6	0.02	48.4	-1.4	0.43	30.3	5.3	1.35	0.9602	-0.08	0.000 8
4	8.10	-10.0	0.81	0.729	51.9	0.02	48.8	-0.77	0.13	31.4	-6.4	2.25	0.9606	-0.04	0.0004
5	8.57	-14.3	1.31	0.866	27.4	0.09	49.2	0.03	0.27	32.4	-4.6	1.75	0.9611	0.01	0.0001
6	9.07	-17.6	1.81	1.03	15.6	0.13	49.6	0.63	0.57	33.5	-5.6	0.13	0.9615	-0.05	0.000 5
7	9.60	- 12.8	1.31	1.22	8.3	0.18	50.0	1.2	0.87	34.6	-6.1	2.35	0.9620	0.00	0.0000
8	10.16	-7.6	0.71	1.46	5.4	0.19	50.0	1.1	0.77	35.8	-3.4	1.45	0.9624	0.04	0.0004
9	10.76	-10.4	1.11	1.73	5.5	0.18	50.8	2.0	1.27	37.0	-2.0	0.95	0.9629	-0.01	0.0001
10	11.38	-5.2	0.51	2.06	7.1	0.13	51.2	0.44	0.47	38.3	0.53	0.05	0.9634	0.04	0.0004
11	12.09	-7.0	0.81	2.44	10.1	0.05	51.6	0.26	0.37	39.6	1.54	0.45	0.9638	-0.02	0.000 2
12	12.71	-2.2	0.21	2.91	14.9	0.11	52.1	-0.86	0.13	40.9	1.1	0.25	0.964 3	0.03	0.0003
13	13.49	3.8	0.59	3.45	17.1	0.23	52.4	-1.0	0.23	42.3	2.0	0.65	0.9647	-0.03	0.000 3
14	14.29	2.0	0.39	4.11	29.1	0.66	52.9	-1.1	0.33	43.8	3.0	1.15	0.9652	0.02	0.0002
15	15.12	8.0		4.88	37.5	-	53.3	-0.72	_	45.2	3.5		0.9656	0.06	-
C,	0.38			0.22			0.25	6		0.22	4		0.120		
P_{ι}	0.87			1.0			1.0			1.0			1.0		
0.6745S ₁₂	2.67			0.693			1.30			4.62		_	0.0027		

表 5 渤海原油物化性质 GM(1,1)预测值及精度检验

风化天	蒸发率(%)		溶解率(%)			表面张力/ ×10 ⁻³ N·m ⁻¹			黏度/Pa•s ^{~1}			密度/g·cm ⁻³			
釵d	预测值	q	е	预测值	q	e	预测值	q	е	预测值	 q	e	预测值	q	e
0	0		0.13	0.0	_	0.25	41.0	0.00	0.22	0.238	0.00	0.03	0.9150	0.00	0.000 6
1	8.8	120	4.93	0.44	534	0.12	40.9	-0.99	0.18	2.79	46.8	0.86	0.932 9	0.10	0.0010
2	9.3	32.9	2.43	0.53	166	0.08	41.2	-0.84	0.08	2.96	13.9	0.33	0.9336	0.06	0.000 7
3	9.9	-1.1	0.03	0.64	77.2	0.03	41.4	-0.22	0.12	3.14	-0.23	0.04	0.934 4	0.04	0.000 5
4	10.5	- 12.8	1.37	0.77	36.8	0.04	41.7	0.22	0.32	3.34	-1.9	0.09	0.935 0	0.00	0.000 6
5	11.1	-14.5	1.77	0.92	17.7	0.11	42.0	0.36	0.42	3.54	-4.3	0.19	0.935 7	-0.03	0.000 2
6	11.8	-9.5	1.07	1.10	6.9	0.18	42.2	0.76	0.52	3.76 ·	-2.4	0.12	0.936 5	-0.05	0.000 4
7	12.5	-11.0	1.37	1.32	2.4	0.22	42.5	1.2	0.72	3.99 ·	-2.7	0.14	0.937 1	-0.10	0.000 8
8	13.2	-5.7	0.67	1.58	0.2	0.2	42.8	0.61	0.52	4.24	-7.9	0.39	0.937 9	-0.12	0.0099
9	14.0	-6.7	0.87	1.90	1.0	0.23	43.0	0.09	0.26	4.50 ·	-8.2	0.43	0.938 5	-0.05	0.000 4
10	14.8	-1.1	0.07	2.28	3.1	0.18	43.3	0.05	0.24	4.77 -	-8.2	0.46	0.939 3	-0.07	0.000 6
11	15.7	-1.8	0.17	2.73	7.1	0.07	43.6	0.23	0.32	5.07 -	- 3.5	0.21	0.9400	0.00	0.000 6
12	16.6	4.1	0.73	3.28	13.0	0.13	43.9	0.16	0.29	5.38	1.5	0.05	0.9406	0.06	0.000 7
13	17.6	3.8	0.73	3.93	20.2	0.41	44.2	-0.76	0.19	5.71	5.7	0.28	0.941 4	0.04	0.000 5
14	18.7	10.0	1.57	4.71	28.7	0.80	44.5	-0.78	0.19	6.06	10.2	0.53	0.942 1	0.12	0.000 2
15	19.8	16.5	_	5.65	39.5		44.7	-0.84		6.43	16.5	_	0.942 8	0.19	_
ci	0.352	2		0.238			0.188	8		0.244			0.0891		
P_{i}	0.93			0.93			1.0			1.0			1.0		
$0.6745S_{i2}$	3.24			0.79			0.79			0.98			0.004 2		

表 6 辽河原油物化性质 GM (1,1)预测值及精度检验

3.3 溢油风化过程中物化性质的灰色相关模式 GM(0,m)

将表 2 和表 3 中渤海原油和辽河原油的蒸发率和溶解率的实测值分别作为 GM(0, m) 中 的 $X_1^{(0)}(t)$ (其中 t = 0, 1, ..., 14),其表面张力、黏度和密度的实测值分别作为 GM(0, m) 中的 $X_2^{(0)}(t)$, $X_3^{(0)}(t)$ 和 $X_4^{(0)}(t)$ (其中 t = 0, 1, ..., 14),进行 GM(0, m) 建模,分别得到两种油 的蒸发率与表面张力、黏度以及密度间的 GM(0, m) 中的灰色辨识参数(b_1, b_2, b_3 和 a_0)和溶 解率与表面张力、黏度以及密度间的 GM(0, m) 中的灰色辨识参数(b_1, b_2, b_3 和 a_0),一并列

<i>-</i> 会.對	渤海	原油	辽河原油				
<i>参</i> 蚁	蒸发率(%)	溶解率(%)	蒸发率(%)	溶解率(%)			
表面张力灰系数 b1	-1.178 7	0.352 52	- 0.376 56	0.648 39			
黏度灰系数 b2	1.070 42	0.121 743	2.877 11	0.401 91			
密度灰系数 b3	33.413 9	-21.523 69	18.4598	- 29.661 0			
灰系数 ao	6.316 81	3.177 68	- 6.649 34	0.521 085			

表 7 渤海原油和辽河原油的 GM (0, m) 灰色参数

入表 7. 将表 7 中的各灰 色参数 b_1, b_2, b_3 和 a_0 分 别代入式(4),得到两种油 的蒸发率和溶解率的一次 累加值的预测值,将其按 式(5)进行累减还原处理, 得两种油风化过程中蒸发

率和溶解率的预测值(列入表 8, 其单位分别同于表 2, 3). 其中建模的原始数据 $X_i^{(0)}(t)$ 取风 化 0 ~ 14 d 的各物化性质的的变化值($t = 0, 1, 2, \dots, 14$), 风化 15 d 的实测值用于检验 GM(0, m) 模型的预测值的可靠性. 同 GM(1, 1) 模型精度检验过程一样, 将后验差检验参数 $c_i \cdot p_i \cdot 0.674 5S_{i2}, e_i = | \epsilon_i(t) - \epsilon_i |$ 和点检验的相对误差 q_i 一并列入表 8. 通过精度检验可

知,分别用溢油的表面张力、黏度以及密度作为自变量预测溢油蒸发率和溶解率的 GM(0, m)模式精度有一半为"好",即为一级,有一半精度为"合格",即为二级.同样,用 GM(0,m)模式 对风化 15 d的两种油的蒸发率和溶解率进行预测,同风化 15 d两种油的蒸发率和溶解率的实 测值进行比较,其预测相对误差在 13% 以下.说明用 GM(0,m)模式能较好地表征溢油风化 过程中物化性质间所具有的灰色相关关系.将 GM(0,m)模式的解式(4)中各灰色辨识参数 的绝对值进行归一化处理,即 $|b_i| / \sum_{i=1}^{m-2} |b_i|$,便可得到各自变量对因变量的贡献率,其中各自 变量的系数 b_i 的符号表明贡献的方向,若为正,即正贡献,表现为增加;若为负,即负贡献,表 现为削减.其灰参数 a_0 是反映因变量未风化状态(基态)和风化过程中所具有的随机性.由表 7 中各灰色辨识参数值可定量表征两种油的蒸发率和溶解率分别与表面张力、黏度以及密度 间的灰色相关关系,同表 2,3 中两种油在风化过程中各物化性质实测值的变化规律相吻合.

风化			渤淮	事原油		辽河原油						
天数		蒸发率(%	,)		溶解率(%)		蒸	发率(%))	ì	容解率(%))
/d	预测值	q	е	预测值	q	е	预测值	q	е	预测值	q	е
0	1.31	_	0.59	1.08		1.07	-4.5		4.45	0.06		0.12
1	2.56	- 14.7	1.16	-0.86	-1 553.3	0.81	7.1	77.5	3.15	-0.10	- 242.9	0.11
2	4.00	-20.0	1.72	-0.11	- 164.7	0.29	9.1	30.0	2.15	0.28	40.0	0.14
3	5.06	-27.7	2.66	0.13	- 59.4	0.20	10.7	7.0	0.75	0.47	30.6	0.17
4	9.98	10.9	0.26	0.74	54.2	0.25	11.3	- 5.8	0.65	0.61	8.9	0.11
5	10.51	5.1	0.21	0.80	17.6	0.11	12.2	-6.2	0.75	0.82	5.1	0.10
6	12.04	9.5	0.32	1.00	12.4	0.10	12.6	-3.1	0.35	0.93	-9.7	0.04
7	13.41	21.9	1.69	1.20	6.2	0.06	13.3	-5.0	0.65	1.05	-18.6	0.18
8	13.51	22.8	1.79	1.26	-8.7	0.13	14.6	4.3	0.65	1.56	-1.3	0.04
9	13.94	16.2	1.22	1.43	- 12.8	0.22	15.2	1.3	0.25	2.00	6.4	0.18
10	12.85	7.1	0.13	1.89	-1.6	0.04	16.0	6.7	1.05	2.28	3.2	0.13
11	13.26	2.0	0.46	2.15	-3.2	0.08	16.1	0.6	0.15	2.43	-4.7	0.06
12	13.68	5.2	0.04	2.69	6.3	0.15	16.1	0.6	0.15	2.65	-8.6	0.19
13	14.19	9.2	0.47	2.97	0.7	0.01	16.2	-4.7	0.75	3.11	-4.9	0.10
14	14.68	4.9	0.04	3.26	2.5	0.07	16.3	- 4.1	0.65	3.35	-8.5	0.25
15	15.72	12.3		3.48	-2.0	—	16.3	-4.1	—	3.55	-12.3	
с,	0.29			0.37			0.34			0.12		
P_i	1.0			0.87			0.93			1.0		
$0.674 \ 5S_{i2}$	2.67			0.69			3.24			0.79		

表 8 渤海原油和辽河原油物化性质 GM(0, m)预测值及精度检验

4 结语

4.1 在海上风化过程中,溢油物化性质(蒸发率、溶解率、表面张力、黏度以及密度)的变化规 律可以表征为一维[风化时间(d)]一阶灰色模式 GM(1,1),其灰色参数 a 和 u 是溢油物化性 质在风化过程中的控制因子,可作为溢油鉴别指标或指示指标. GM(1,1) 模式预测精度符合 统计学检验指标的要求,可作为溢油风化过程中物化性质的预测模式使用,对于预测精度较差的,可用残差辨识模式对原模式进行修正以提高预测精度.

4.2 以溢油的蒸发率和溶解率为因变量、以溢油的表面张力、黏度以及密度为自变量,进行 GM(0, m)建模,其灰色参数 b₁, b₂和 b₃可分别表征溢油在风化过程中表面张力、黏度以及 密度与溢油蒸发率和溶解率相互作用的方向和大小,即表明溢油的这些物化性质间存在着一 定的灰色相关关系; a₀ 是反映溢油物化性质基态和风化过程中的随机因素. 溢油 GM(0, m) 模式预测精度符合统计学检验的要求,可用于溢油风化过程中物化性质变化的预测和预报.

参考文献

- 1 张珞平, 吴瑜端. 石油的海洋的地球化学行为. 海洋环境科学, 1986, 5(2): 53~61
- 2 赵云英,杨庆霄. 溢油在海洋环境中的风化过程. 海洋环境科学, 1997, 16(1): 45~52
- 3 杨庆霄,徐俊英,李文森.海上石油蒸发过程的研究.海洋学报,1990,12(2):187~193
- 4 杨庆霄,徐俊英,李文森.海上溢油溶解过程的研究.海洋学报,1994,16(3):49~56
- 5 杨庆霄,徐俊英,吴之庆,等.溢油的物理性质在模拟风化过程中的变化.海洋环境科学,1989,8(3):16~24
- 6 徐恒振,周传光.灰色系统理论在建立海面石油烃风化模式中的应用.海洋学报,1991,13(1):51~59
- 7 邓聚龙. 灰色系统基本方法. 武汉: 华中理工大学出版社, 1988. 1~162
- 8 邓聚龙.灰色控制系统.武汉:华中理工大学出版社,1987.293~343
- 9 邓聚龙.灰色预测与决策.武汉:华中理工大学出版社,1988.97~190

Study on grey models of physical and chemical properties of spilled oils

Xu Hengzhen, ¹ Ma Yong'an, ¹ Shang Longsheng¹Zhou Chuanguang, ¹ Li Hong ¹ Yao Ziwei, ¹ Zhang Guoguang, ¹ Sun Yuhong, ¹ Wu Zhiqing, ¹ Yang Qingxiao ¹

1. National Marine Environmental Monitoring Center, Dalian 116023

Abstract—By approaching variations of physical and chemical properties (i.e., rates of vapour and dissolution, surface tension, coefficient of viscosity and density) of spilled oils during weathering from application of grey system theory, GM(1,1) and GM(0, m) of forecasting models of the physical and chemical properties of spilled oils during weathering are established. The results show that: (1) the precision and accuracy of the forecasting of GM(1,1) and GM(0, m) with statistical test are satisfactory, (2) the grey relativities of the physical and chemical properties of spilled oils during weathering can be expressed as the parameters of grey recognition of GM(0, m) and (3) The surface tension, the coefficient of viscosity and the density can be taken as the factors of forecasting of the rates of vapour and dissolution of spilled oils during weathering.

Key words Spilled oils, weathering, physical and chemical properties, GM(1,1), GM(0,m)