长江口沉积物中常量元素及有关 形态物相定量分析研究

韩建成 李 莉 陈启明 吴欣然 陈邦林 韩庆平

(华东师范大学化学系,上海)

摘 要本文以熔融制样技术和数学校正分析方法的X射线荧光光谱实验手段,对 长江口水域3个站位的10个常量元素进行定量分析.这10个常量元素分别是钠、镁、 铝、硅、磷、钾、钙、钛、锰和铁,获得较好结果.分析的检出限达到10⁻³左右.精 密度用变差系数K表示,K<0.03826,因此具有较高精密度.最大分析相对误差是 0.27%.此外本文还应用无标分析法的X射线衍射实验手段对同样3个站位样品进 行形态物相定量分析.分析结果表明,长江口3个站位中沉积物主要成分是α-石英, 其次是钠长石、高岭土、绿泥石、伊利石、方解石和蒙脱石等.分析结果与X射线 荧光光谱元素定量分析结果基本一致.绝大部分物相定量分析误差小于15%.本文 对于了解长江口存在的离子交换、吸附、解吸和絮凝等化学作用过程,均具有重要 参考价值.

关键词 长江口沉积物 X 荧光 X 衍射 元素定量 物相定量

前 言

本文以熔融制样技术的 X 射线荧光光谱法对长江口水域3个站位为 I₂、I₂、I₂的沉积物中 10个常量元素进行定量分析,这10个常量元素分别是钠、镁、铝、硅、磷、钾、钙、钛、锰 和铁.熔融制样技术不但可以在一定程度上克服样品的吸收-增强效应^[1],而且能够有效克服 样品的不均匀性、粒度效应和矿物效应等各种基本效应.为了更有效减少基体效应,特别是 样品中元素间的吸收-增强效应等.因此在分析方法上采用数学校正法.以12个地球化学标样 作为标准样品,用多组分标样代替纯元素标样.标准样品不仅有准确的化学分析值,而且各 元素含量范围与待测样品相应.应用 Lachance-Trail 的校正方程计算α系数^[2].本文应用加拿 大地质调查局的卢索编写的 CILTA 程序^[3],然后输入 PW1404X 射线光谱仪的 X-40软件,用 来进一步校正基体的吸收-增强效应.一旦标准样品测量完毕,自动打印出理论α系数及经

* 国家自然科学基金资助项目.

本文于1994-11-06收到,修改稿于1995-07-11收到.

α系数校正后的浓度.对未知试样的测定亦是如此.此外,本文还应用粉末 X 射线衍射法,采 用无标法定量相分析,分析了长江口水域3个站位沉积物的各种形态物相.

1 实验

1.1 仪器及操作条件

1. PW1404顺序式 X 射线荧光光谱仪,使用 Rh 靶 X 光管,工作电压40kV,管电流70mA; 丹东 G₆-1型多道 X 射线荧光光谱仪.

SiemenD-500X 射线粉末衍射仪, 2θ 误差优于±0.1°, Cukα, Ni 滤片, 管压40kV, 管 流20mA, 扫描速度2°/mim, 走纸速度20mm/min; 丹东 Y-2型 X 射线衍射仪.

3. 试样:长江口水域中外高桥、小九段和白龙港的3个站位试样,分别用 I₂、 I₂和 I₂编 号; I₂加10%分析纯α-SiO₂的混合物,取编号为Ν; I₂加10%分析纯α-SiO₂的混合物,取编 号为V; I₂加20%分析纯α-SiO₂的混合物,取编号为N.

4. 选用12个国产地球化学标样作为标准样品,虽然它们的含量是各不相同,但待测样品 的元素基体组分浓度属于标样的浓度范围内.12个标样是含有试样待测元素硅、铝、铁、钾、 钠、镁、钙、钛、锰和磷等10个浓度不同标样,它们编号分別是GSD₂、GSD₆、GSD₈、GSD₁₀、 GSR₁₁、GSR₂、GSR₃、GSR₄、GSR₆、GSS₄、GSS₅和GSS₇. 元素的分析条件见表1.

元素及其				2 0 ;	角度(°)			РНА•••		测量	
特征	E 线	狭缝 '	分析晶体	谱线	正背景	负背景	探测器**	上限	下限	(s)	
Na	ka	С	PX1	27.460	2.00	2.00	FI.	20	75	200	
Mg	kα	С	PX1	22.725	1.60	1.60	FL	30	70	100	
Al	kα	F	PE	144.825	1.90		FL	20	80	60	
Si	kα	С	PE	109.245	5.00		FL	20	80	60	
Р	kα	С	PE	89.570	3.50	-	FL	38	72	100	
к	kα	F	L1F200	1 36. 750	_	3.50	FL	20	80	40	
Ca	kα	F	LiF200	113-185		4.00	FL	25	75	40	
Ti	kα	F	LiF200	86.215	_	3.50	FL	8	80	60	
Mn	kα	F	LiF200	63. 015	1.50	-	FL	20	70	60	
Fe	kα	F	LiF200	5 7. 550		2.50	FL	15	70	40	

表1 元素的分析条件

* 粗狭缝 C 为550µm, 细狭缝 F 为150µm.

* * FL 指流气正比计数器.

* * * PHA 指脉冲高度分析器.

1.2 X射线荧光光谱法制样方法

将试样研磨均匀后,在105 C条件下,烘干2h,准确称取1.000g试样;另外加入 Li₂B₁O₇ 2.400g、LiBO₂4.400g和 NH₁NO₃1.0g;将上述混合物放置在5%Au-95%Pt 坩锅内均匀混合, 随后在850℃条件下预氧化10min,再在1200℃条件下熔样0.5h.最后加入少量NH,I作为脱 膜剂,待熔液成为清液后,在1200℃条件下在马弗炉中成型,冷却后形成 \$40mm 玻璃圆片, 底表面分别用120目和500目刚玉磨沙在预磨机上磨平,洗净表面待测.应用同样制样方法,制 备12个标样和3个已知浓度未知样品 GSD₃、GSR₅和 GSS₂.

为了测定试样的烧失重,在已恒重的 Pt 坩锅内,准确称重经干燥的0.5g 试样,在煤气灯 上灼烧至约1 000℃并称至恒重,将测定烧失重作为固定浓度形式,在测量样品时输入软件,以 校正烧失重对分析元素的影响.

1.3 X射线荧光光谱法对标准样品中各基体组分校正

根据 de Jough 提出经验校正模型

$$C_i = D_i + E_i I_i (1 + \sum_{i \neq j} \alpha_{ij} C_j), \qquad (1)$$

式中, *a*_i,是适合于熔融片系统修正的系数, *I*_i 是 *i* 元素分析线的净强度, *D*_i 和 *E*_i 是工作曲线 的回归因子, *D*_i 和 *E*_i 的计算采用 Deming 的加权最小二乘法^[4], *C*_i 和 *C*_i 分别表示 *i* 组分和 *j* 组分含量(百分浓度).本文中使用 CILIA 程序中,计算理论 *a*_i,系数所需的基本参数,随后计 算理论 *a* 系数并自动打印出 *a* 系数校正后的浓度.另外,由烧失重引起待测元素的理论 *a* 系数 可同时计算,并一起作为固定的理论 *a* 系数输入 PW 1404X 荧光仪中 X-40软件内.对未知样 的测定亦是如此.

对12个在分析浓度范围内的已知标准样品来说, *C*, 和 *C*, 为已知, 元素分析线的净强度和 熔融体系的理论 α 系数可以测定, 根据式 (1) 由 X-40软件可自行迭代计算出各待测光素相应 的仪器因子 *D*_i 和 *E*_i.

表2列出12个标样中各常量元素分析线的净强度;表3列出标样中各待测元素的工作曲线 常数;表4列出12个标样中分析元素含量较高的 Al₂O₃、SiO₂和 Fe₂O₃浓度校正前后的比较值, 未校正的浓度是指仅用线性回归法(未用α系数)所获得的浓度值;表5列出标样中各元素的 基体校正前后的 *RMS* 和 *K* 值.

表2 标样中各常量元素分析线的净强度

(单位: KCPS)

标样	Na ₂ O	MgO	Al_2O_3	SiO ₂	P_2O_5	K₂O	CaO	TiOz	MnO	$\mathrm{Fe}_{2}\mathrm{O}_{3}$
GSD ₂	0.312 8	0.055 8	1.299 5	22.910 4	0.0197	6.2482	0.350 3	0.4585	0.318 8	16.357 0
GSD ₆	0.2424	0.7700	1.145 0	19.9378	0.097 7	2.9907	5-376 3	1.574 9	0.985 0	49.5551
GSD ₈	0.1014	0.078 5	0.635 9	27.4739	0.016 0	3.585 5	0.361 6	1.277 6	0.395 0	18.987 9
GSD ₁₀	0.034 5	0.042 2	0.229 1	29.7798	0.025 1	0.1639	0.993 5	0.436 6	1.082 2	34.055 7
GSD11	0.075 0	0.1672	0.852 5	25.071 5	0.022 4	3.9592	0.6801	0.7193	2.509 8	37.519 3
GSR ₂	0.406 0	0.435 4	1.308 6	19.628 5	0.100 9	2.333 0	7.182 4	1.0190	0.6536	41.345 4
GSR₃	0.344 4	1.956 1	1.081 3	14.1881	0.400 9	2.9468	12.306 0	4.654 3	1.267 3	103.614
GSR₁	0.038 1	0.032 9	0.289 8	30.326 8	0.089 6	0.810 9	0.416 5	0.5382	0.218 4	28.272 (
GSR₅	0.026 5	1.3801	0.421 5	5.587 0	0.028 7	1.684 0	56.1199	0.5684	0.4297	18.9327
GSS₄	0.0427	0.1336	1.940 5	16.4696	0.066 3	1.358 1	0.406 0	3.9911	1.570 5	90,8834
GSS_5	0.0391	0.1622	1.7584	16.992 5	0.036 0	1.945 9	0.145 8	2.311 4	1.4688	110.436
GSS7	0.0314	0.060 2	2.379 3	10.417 8	0.111 6	0.275 1	0.246 5	7.801 5	1.9438	163.678

	表3 标样中各待测元素的工作曲线常数											
回归因子	N82O	MgO	Al ₂ O ₃	SiOz	P ₂ O ₅	K ₂ O	CaO	TiO ₂	MnO	Fe ₂ O ₃		
D,	- 0. 335 64	0.029 95	- 0. 014 61	-0. 340 46	-0.001 89	-0.015 40	-0.019 32	0.008 36	-0.006 77	-0.015 85		
E_t	10.018 14	3.78872	11.979 47	2.966 22	2.011 36	0.746 84	0.680 89	0.45917	0.150 49	0.139 72		

表4 12个标样中分析元素含量较高的 Al₂O₃、SiO₂和 Fe₂O₃浓度校正前后的比较值

标		Al ₂ O ₃					SiO2					Fe ₂ O ₃			
样 编 号	化学值	未校正	误差 (%)	校正后	误差 (%)	化学值	未校正	误差 (%)	校正后	误差 (%)	 化 值	未校正	误差 (%)	校正后	误差 (%)
GSD ₂	15.72	15.94	0.22	15.80	0.08	69.90	69.72	-0.18	70. 27	0.37	1.89	1.95	0.06	1.90	0. 01
GSD6	14.16	14.04	- 0. 12	14.08	-0.08	61.23	60.64	0. 59	61.29	0.06	5, 88	5.82	-0.06	5.85	-0.03
GSD_8	7.71	7.79	0.08	7.73	0.02	82.92	83.65	0.73	82.45	-0.47	2.20	2.26	0.06	2.19	- 0. 01
GSD10	2.84	2.79	-0.05	2.82	-0.02	88, 89	90.69	1.80	88- 12	-0.47	3.86	4.01	0.15	3.87	0.01
GSD11	10.37	10.45	0.08	10.39	0. 02	76.25	76.32	0. 07	76.00	-0.25	4.39	4.42	0.03	4.37	-0.02
GSR ₂	16.17	16.05	-0.12	16.08	- 0. 09	60.62	5 9. 7 0	-0.92	60.66	0.04	4.90	4.86	- 0. 04	4.90	0.00
GSR3	13.83	13.26	-0.57	13.77	-0.06	44.64	43.09	-1.55	44.70	0.06	13.40	12.13	-1.27	13.19	-0.21
GSR₄	3.52	3.54	0.02	3.55	0.03	90.36	92.36	2.00	90.35	0.01	3. 22	3.34	0.12	3.23	0.01
GSR6	5.03	5.15	0.12	5.03	0.00	15.60	16.83	1.23	15.41	-0.19	2.52	2.25	-0.27	2.53	0. 01
GSS₄	23.45	23.81	0.36	23.59	0.14	50.95	50.06	-0.89	51.22	0.27	10.30	10.64	0.34	10.34	0.04
GSS₅	21.58	21.58	0.00	2 1.53	-0.05	52.57	51.65	-0.92	52.96	0.39	12.62	12.92	0.30	12.67	0.05
GSS7	29.26	29. 20	-0.06	29.26	0.00	32.69	31.58	-1.11	32.87	0.18	18.76	19.14	0.38	18.88	0.12

表5 标样中各元素的基体校正前后的 RMS 和 K 值·

基体组分	关书社团	RI	ns	K		
	· · · · · · · · · · · · · · · · · · ·	校正前	校正后	校正前	校正后	
Na ₂ O	0.04%~3.86%	0.124 26	0.063 27	0.154 06	0.037 58	
MgO	0.082%~7.77%	0.077 33	0.029 88	0.049 64	0.038 25	
Al_2O_3	$2.84\% \sim 29.26\%$	0.238 28	0.070 97	0.062 67	0.017 97	
SiO ₂	15.60%~90.36%	1.256 20	0.308 97	0.180 77	0.039 93	
P_2O_5	0.032%~0.95%	0.006 83	0.003 92	0.015 91	0.009 25	
K ₂ O	0.125%~5.19%	0.080 11	0.052 32	0.064 36	0.031 26	
CaO	0.095%~35.67%	0.489 35	0.079 86	0.130 45	0.024 82	
TiO2	0.21%~3.36%	0.096 29	0.016 39	0.064 55	0.013 25	
MnO	0.02%~0.32%	0.008 67	0.004 43	0.017 45	0.008 63	
Fe ₂ O ₃	1.89%~18.76%	0.457 26	0.080 06	0.13716	0.021 90	

* $RMS = \sqrt{\frac{\sum (c_s - c_{cal})^2}{n - K}}, K = \sqrt{\frac{\sum ((c_s - c_{cal})^2 / (c_s + c))}{n - K}} c_s$: 标样的浓度; c_{cal} : 标样回归浓度; n: 标样的数目;

K:利用标样计算的系数数目 (K=0); c,+c:标样的线性加权函数; c:常数项,通常取0和1.

1.4 X射线荧光光谱法测定未知试样长江口水域3个站位中沉积物常量元素定量分析

为了进一步验证方法的准确性, 配制3个己知浓度标样, 分别取 GSD₃*、GSR₅*和 GSS₃* 标样, 进行 X 射线荧光光谱测定, 所得数据见表6.

首体细八	GS	D ₃ *	GS	GSS₃ ⁺		
埜 '件 组 分 -	化学值	光谱值	化学值	光谱值	化学值	光谱值
Na ₂ O	3. 50	3.56	0.35	0.32	1.66	1.65
MgO	4.14	4.10	2.01	1.98	1.81	1.79
Al_2O_3	14.83	14.86	18.82	18.90	14.18	14.33
SiO2	58.43	58.59	59.23	59.20	62.60	62.58
P_2O_5	0.34	0.35	0.16	0.16	0.17	0.17
K ₂ O	2.77	2.76	4.16	4.10	2.59	2.61
CaO	4.60	4.60	0.60	0.62	1.72	1.77
TiO₂	0.98	0.97	0.66	0.67	0.81	0.81
MnO	0.12	0.12	0.02	0.02	0.23	0.22
Fe ₂ O ₃	7.35	7.37	7.60	7.61	5.19	5-21
Σ	99. 47	99.69**	99.58	99.55**	99. 55	99.73**

表6 GSD3'、GSR5'和GSS3'试样分析结果(%)

* GSD₃、GSR₅和 GSS₃的烧失重分别为2.41%、5.97%和8.59%. * * 10个基体组分的浓度和烧失重之和.

长江口水域3个站未知试样Ⅰ₂、Ⅱ₂和Ⅱ₂,经X射线荧光光谱测定,所得数据见表7.

试样	LOI	Na2O	MgO	Al ₂ O ₃	SiO ₂	P ₂ O ₅	K2O	CaO	TiO₂	MnO	Fe2O3	Σ.
I 2	2.940	2.153	1.556	10.463	73.776	0.125	2.374	1.990	0. 520	0.090	4.100	100.087
I ₂	7.340	1.700	2.341	11.711	64.828	0.142	2.239	4.520	0.761	0.086	4.687	100.354
Z 2	7.000	1.614	0.706	11.745	63-894	0.173	2.145	4.538	0.971	0.103	5.417	100. 307
试样		Na	Mg	Al	Si	Р	к	Са	Ti	Mn	Fe	
I 2		1.597	0. 938	5.537	34- 190	0.054	1.971	1.422	0.312	0.070	2.868	
I ₂		1.261	1.412	6-197	30. 307	0.062	1.858	3. 231	0.456	0.066	3.278	
I 2		1.197	1.632	6.215	29. 8 70	0.076	1.780	3.244	0.582	0.080	3.789	

表7 长江口水域3个站未知试样!2、Ⅱ2和Ⅲ2元素分析结果(%)

* ∑指10个基体组分加烧失重总和,烧失重以 LOI 符号表示.

1.5 X射线衍射无标法测定未知试样长江口水域3个站位中沉积物常量元素的物相定量分析

无标法测定未知试样的依据是:

$$\begin{cases} \sum_{i=1}^{n} (1 - \frac{I_{ij}}{I_{is}}) \mu_i^* X_{is} = 0, & 1 \leq j \leq n, \\ \sum_{i=1}^{n} X_{is} = 1 & i \neq n \end{cases}$$
(2)

式中, I.s: s 试样的第 i 相的衍射强度;

 $I_{i,i}$; j试样的第i相的衍射强度;

 $X_{is:}$ s 试样的第 *i* 相的重量百分数;

μ,*: i 相的质量吸收系数.

应用 X 射线衍射无标定量法测定长江口水域3个站位沉积物常量元素物相定量分析,该 方法优点不需标样,其结果见表8.

试样	α-石英	伊利石	钠长石	绿泥石 和高岭土	蒙脱石 和方解石
I ₂	69. 42	3. 95	11. 38	13. 24	2.01
I ₂	66.31	4.88	13.12	10.22	5.48
II 2	64.86	5.91	10.10	7.26	11.88
,, ∫ 实验 值	72.15	3.85	10.45	8.65	4.90
™↓理论值	73.68	4.39	11.80	9.20	4.93
,(实验值	71.80	4.61	8.05	6.17	9.37
↓理论值	72.07	5.32	9.08	6.53	10.69
(实验 值	77.11	2.90	8.28	7-35	4.36
™└理论值	82-89	3.90	10.49	8.18	4.38

表8 长江口水域3个站位沉积物未知试样 12、112和 112物相定量分析结果

2 结果与讨论

(1)由表5列出的12个标样中各分析元素基体,经理论α系数对基体进行校正,*RMS*和*K* 值大大减小.其中分析元素含量较高的Al₂O₃、SiO₂和 Fe₂O₃和*RMS*值分别从0.23828、1.256 20和0.45726减小到0.07097、0.30897和0.08006,它们的*K*值分别从0.06267、0.18077 和0.13716减小到0.01797、0.03993和0.02190.由表4所列数据可知,标样回归结果与标准 值的最大误差分别从0.57%、2.00%和1.27%减小到0.14%、0.47%和0.21%.所以基体效 应的数学校正对熔融片体系是必要的,从而说明该方法是可信的.

(2) 从配制3个己知浓度标样 GSD³、GSR³和 GSS³的 X 射线荧光光谱测定结果考察,见 表6. 将光谱值与化学值相比较,最大分析误差绝对值是0.16%(SiO₂分析值),最大分析相对 误 差是0.27%,这说明应用理论 α 系数对于地球化学试样熔融片进行基体效应的数学校正是 成功的,进一步说明该方法是可信的,具有较高精度.

(3) 从长江口水域3个站位中未知物试样 I₂、I₂和 I₂元素分析结果取得信息,见表7.在 长江口水域3个站位沉积物中,硅的含量明显高于其他元素含量,随后依次是铝、铁、钙、钾、 钠、镁、钛、锰和磷.因此可以说,长江口水域3个站位沉积物中二氧化硅含量占主导地位, 另外,存在不同形态的硅铝酸盐等.

(4)从试样 N、V和 N物相百分含量的理论值与实验值比较,见表8.绝大部分物相分析 误差小于15%,个别物相分析误差大于15%.这说明该方法是可靠的,具有一定精度.无标 法方法本身误差主要来源于样品非晶成分影响.

(5) 从长江口水域3个站位沉积物未知试样 I₂、I₂和 I₂物相分析取得数据,见表8,长江 口水域3个站位沉积物主要成分是α-石英,其次依次是钠长石、高岭土、绿泥石、伊利石、方 解石和蒙脱石等,由10种常量元素构成7个物相,这与X射线荧光光谱元素定量分析结果是一 致的.

(6)签于有机物存在大量轻原子氮与物相复杂性和 X 射线衍射峰弥散,故本文对长江口 水域3个站位沉积物中有机物未作元素分析与物相分析.另外,虽然由 X 射线荧光光谱定性分 析测得长江口水域3个站位沉积物未知试样 1 2、I 2和 II 2中含有微量元素 Cu、Cd、Ni、Co、Pb、 Sr 和 Zr 等,但由于熔融法高倍稀释,故未能对沉积物中的微量元素进行定量分析.同样,由 于衍射法精度限制,故亦未能对沉积物中微量元素有关形态物相作定量分析.

(7)本文仅对长江口水域3个站位沉积物常量元素和有关形态物相进行了定量分析,分析 站位不够多、不够普遍,因此所得结论有一定局限性.但是,本文对长江口水域沉积物和悬 浮物分析方法有一定普遍意义.另外,3个站位沉积物有某种程度上代表性,故本文对长江口 水域沉积物中元素分布和物相分布具有一定参考价值.

参考文献

- 1 崛田一夫.分析机器.1974,7,424
- 2 Trail R J and G R Lachance. Can Spectrosc., 1966, 3, 63
- 3 Rousseau R N and F Claisse. X-Ray Spectrum, , 1974, 13, 31
- 4 陈远盘,刁桂年.光谱学与光谱分析,1982,2,14
- 5 韩建成等著. 多晶 X 射线结构分析. 上海: 华东师范大学出版社, 1989, 185
- 6 韩建成. 化学世界, 1981, 1, 21
- 7 Eevin L S. J. Appl. Crys., 1977, 10, 147