东海溶解氧垂直分布和季节变化

蒋国昌 王玉衡 唐仁友

(国家海洋局第二海洋研究所,杭州)

摘要

本文主要讨论了1984年8月至1985年5月东海溶解氧垂直分布和季节变化. 结果表明:春、夏季节水体明显分层,密度跃层强度大.春季透光层光合作用强烈, 氧的净增量(ΔO_2)大.在水文条件和生物活动占优势的情况下,春季氧含量形成 了垂直分布有一最大值;并且发现跃层上界面以上水体中 ΔO_2 和叶绿素a垂直 积分值之间存在着相关性,相关系数(r)为0.97(n = 9). ΔO_2 季节变化明显地 展示了上层光合作用和底层氧化过程在各个季节的强弱程度,而且间接地反映了 春季初级生产力为全年最高。

海洋中溶解氧的分布和变化是温度、生物、化学及各种物理过程联合影响的结果,但 是氧在不同海区、不同时间和不同深度所受的影响因素也不相同,海表层氧含量一般受水 温控制而处于饱和状态;在水体分层时期,透光层由于浮游植物的光合作用强而出现高的 氧含量,并且在次表层形成氧的最大值^{〔1-2〕}因此,在透光层中氧含量高低直接反映了 该海区初级生产力的大小.在光合作用区以下的水层则由于有机质的分解耗氧,氧含量随 深度的增加而明显降低.海洋化学专家曾对世界海洋中氧的分布进行了许多研究^{〔1-7〕}, 我国海洋化学工作者对黄海溶解氧的分布也曾进行了不少报道^{〔1-6〕},而对东海报道则较 少.因此,本文利用1984—1985年的东海调查资料,对东海溶解氧的垂直分布和季节变化 进行初步探讨,目的是为了更好地了解东海溶解氧分布和变化行为,同时对反映东海区初 级生产力也具有一定意义.

一、资料和方法

本文资料来自于1984年8月、11月和1985年2月和5月在东海区4个航次的断面调查 结果.这些航次都是在月初至中旬开始调查,月末至下月初结束.本文以29 N断面为主, 另选取几个典型站位进行讨论.站位如图1所示.

采样深度为 0 、 10 、 20 、 30 、 50 m 和底层,水样用 Niskin颠倒采水器采集,采集后的 水样首先固定溶解氧水样,然后用经典的 Winkler法进行滴定.营养盐水样用 0.45 µ m 微孔 滤膜过滤,过滤后的水样立刻在船上分析.硝酸盐用锌 - 镉还原法,由LGC 2 - 1 型船用

本文于1989年10月25日收到,修改稿于1990年2月25日收到。

图 1 东海站位图

分光光度计测定.盐度水样带回实验室,由WUS型盐度计测定.叶绿素a (chla)测值由 我所生物室提供。

(一) 物理变化

图 2 表示 29[°] N断面条件密度(o_i)分布态势。春季(5月),10-30m水体出现了层化现象,跃层强度较大,o_i由10m的23.0增加到30m的25.0,30m层以下水体为均匀分布。 夏季(8月),o_i跃层下延,30-60m层形成跃层,但是沿岸区跃层下延不明显,仍约为10m 左右,跃层强度略大于外海区.秋季(11月),由于海表层水温下降,垂直对流运动加强, 水体分层逐渐消失而趋于均匀分布.冬季(2月),整个横断面o_i完全呈现垂直均匀状态。

(二) 叶绿素 a 和营养盐变化

1. 叶绿素 a

陆架区叶绿素 a 分布如图 3 所示。春季,透光层叶绿素 a 含量高,最高值位于沿岸区 (4064 站垂直积分值为255mg/m²(1%10)),外海区(4070-4072 站)较低,平均垂直积 分值为27.7mg/m².叶绿素最大值处在透光层下界(10%-3%10),这与密度跃层相呼应。 夏季,透光层叶绿素 a 含量要低于春季,最大值位于30-60m之间。而该季节的最高含量 处在4062 站20m层,其值为1.15mg/m³.5月和8月,透光层叶绿素 a 垂直积分值平均分 350

别为49.8和22.3 mg/m²(1%1%).秋季和冬季叶绿素 a 含量降低,垂直分布最大值消失。

2. 营养盐

东海海区NO₃-N浓度,像其他陆架区一样,存在着明显的季节变化.冬季,当入射辐射小,水体均匀混合时期,也就是在浮游植物对营养盐吸收较低的时期,硝酸盐浓度最大,20m以浅水体平均值为4.55µmol/dm³.从春季开始,随着春季水华,透光层营养盐浓度降低到春末至夏初期间的最小值,5月和8月20m层以上水体NO₃-N平均值分别为1.44和0.99µmol/dm³.密度跃层以下,浓度急剧增大,存在着明显的硝酸盐跃层,底层浓度最高,平均浓度分别为8.78和11.13µmol/dm³.

(三) 溶解氧时空变化

(単位: mmol/m^{*})

本文将获得溶解氧测值减去现场温盐下的饱和含量,所得到的 ΔO_2 (即为AOU的负值) 作为探讨对象,溶解氧总分布趋势(图 1),冬季,整个横断面 ΔO_2 小,多数站位都小于9 mmol/m³,且呈垂直均匀分布,春季,随着水华,浮游植物大量繁殖,透光层氧含量迅 速增加,使表层 ΔO_2 增至39-83 mmol/m³,大约在分层的10-20 m之间,增加幅度更大, 10 m层为46-149 mmol/m³;20 m层除沿岸区较低外,也增加为27-91 mmol/m³之间,本 文利用跃层强度的计算方法($I_{3O2} = \frac{C_{\Delta O_2}}{\Delta Z}$,其中, C'_{2O} 是氧垂直梯度下界含量,

C_{MO2}是上界含量, ΔZ是氧垂直梯度下界深度与上界深度之差值。 I_{MO2}是氧最大值强度。), 计算出氧垂直最大值强度上界和下界分别为2.3mmolm^{*}和 9.6mmol/m³. 有趣的是氧 垂直分布最大值存在的深度与叶绿素 a 最大值深度相一致。而且位于密度跃层区 (图 5).

该现象出现不是偶然的,而是三者相互联系的结果,深层氧含量较低,ΔO2已变为负值, 底层平均值为 71 m mol·m³,从ΔO2的分布明显可见,ΔO2透光层越高,深层越低,二 者密切相关,

夏季、溶解氧含量较低(图 4),其范围为298— 441m mol m'。透光层ΔO2较小,其最

高含量也只有32 mmol/m³,图中最大值不明显。密度跃层以下,氧含量急剧下降,至底 层降为最小值,底层ΔO2平均值为-146mmol/m³.显然该值明显地反映了春季水华以来 透光层具有丰富的初级生产力。

2、季节变化

(1) 跃层以上季节变化 (0-20 m层): ΔO2 的季节变化图 (图 6) 表明,春季氧增量为全年最高 (各站平均含量为62 mmol/m³),而后逐渐下降 (夏季为16 mmol/m³),至秋季为全年最低含量(平均含量为6.3 mmol/m³),冬季又稍有增加(平均量值为11 mmol/m³).从变化图中可以发现、ΣO2的季节变化与ΔO2有一定差异、即夏季后至冬季、氧 (ΣO2)含量逐渐增加,ΔO2反而有下降趋势.出现这种差异的主要原因是、前者 (ΔO2) 主要依赖于光合作用过程减弱,而后者主要由于水温下降,致使O2量增大之故.

(2)深层季节变化(50m至底层):冬季由于海表层水温最低,水体垂直混合剧烈, 把高氧表层水带至深层,使深层氧含量迅速得到补充,从图6中可以看到,ΔO2冬季最高, 平均含量为9mmol/m³;从春季开始,水体逐渐分层,形成屏蔽效应,因此深层氧含量受 来自透光层的大量有机质沉降分解耗氧,使ΔO2平均含量下降为-63mmol/m³,至夏

季有机质分解对氧继续消耗, 使ΔO₂平均下降为-105mmol/m³; 秋季温跃层逐渐消退, 使深层低氧状态缓慢得到氧的补充, 平均含量上升为 26 mmol/m³,从整个横断面来看, 沿岸区底层ΔO₂要远低于外海区底层, 如沿岸的4064 站底层,从冬季至春季氧含量下降了 -105mmol/m³;而外海区的4069 站只下降了-43 mmol/m³,这种差异显然是沿岸区底层

有机质含量远高于外海区底层。也间接地反映了沿岸区透光层初极生产力远大于外部区的这一事实。

三、讨 论

海洋中溶解氧的分布已进行了许多研究,东海与其他海区一样,溶解氧具有一定的分 布特征和变化规律,但是各个海区其形成机理各有差异,特别是垂直分布最大值,关于其 形成机理的原因则有各种解释^[1,2,5].本文结果分析表明,东海溶解氧垂直分布最大值 其形成机理为:海表层氧含量随着水温升高而不断向大气逸散,在跃层区,水体垂直交换 缓慢,在生物活动占优势的情况下(叶绿素 a 呈现最大值),溶解氧在跃层区域或跃层区下 界附近逐渐富集增高,跃层以下系有机质分解消耗而下降,使氧含量形成垂直分布最大值.

Gran (1933)认为溶解氧最大饱和度与浮游植物最大丰度一致^{〔2]}.从结果中表明, 春季,在 σ_i 跃层以上的水体中 ΔO_2 和叶绿素 a 有相同分布特征.根据上述现象,对二者数 据进行数理统计,即 ΔO_2 跃层上界面以上水体中 ΔO_2 和叶绿素 a 含量各自进行垂直积分, 然后将得到总量进行回归分析(图7).由图7可看出,春季跃层以上水体中溶解氧与叶绿素 a 含量之间存在着良好的线性关系.该线性关系阐明了一个问题,即透光层在光合作用大量产氧情况下,净产氧量(ΔO_2) 与叶绿素 a 有线性关系存在.

东海春、夏季节,在密度跃层的屏蔽 效应作用下, 上覆层和深层ΔO₂产生了完 全不同的分布特征和量值差异,较明显地 显示了光合作用和氧化过程不同的结果。 春季上覆层ΔO₂含量为全年最高,甚至\O₂ 含量也超过了冬季,因此可以表明,春季透 光层光合作用强烈,初级生产力高, 用¹⁴ C 得的初级生产力平均值为2152mg/m²·dC¹ (29 N)就证实了上述解释,夏季生物活 动相应减弱,初级生产力平均值为798 mg m²·dC, ΔO₂也随着下降, 秋、冬季 节, 由于同化作用显著下降, ΔO₂在结果

中明显地出现极低值,这与叶绿素 a 和初级生产力 (冬季,平均值为93 mg/m²・d C)表 现极低值是一致的,深层氧化过程强弱与透光层生物活动密切相关,虽然夏季深层ΔO2为 全年最低,但是季差值显示春季最大,也就是说春季耗氧速率要大于夏季,从结果中表明

由我所生物室提供,在此译表谢意。

春季氧下降量比夏季大1倍以上,同时该现象也间接地反映了春季初级生产力要高于夏季。

上述现象在无机氮分布一文中也显著可见^[8],这是由于上述过程产生和变化,同时 也伴随着营养盐的变化。因此,可根据硝酸盐和亚硝酸盐的分布特征得到进一步解释。

四、结 语

1. 春季, 东海存在着溶解氧垂直分布最大值, 其形成机理是光合作用和密度跃层联合 影响的结果。

东海春季透光层光合作用强烈, ΔO2为全年最高,并且与叶绿素 a 有良好的线性关系.深层耗氧速率最大,ΔO2的季差为全年最大,这与透光层光合作用强烈,生物活动盛行,有机物沉降分解耗氧密切相关.

参考文献

- Joseph L. Reid, Jr., Distribution of dissolved exygen in the summer thermocline, J. Mar. Res., 30 (1972), 2: 138-147.
- Tijssen S. B. and F. J. Wetsteyn, Diurnal Pattern, seasonal change and variability of oxygen in the water column of the oyster ground (North Sea)in spring summir 1981. Neth. J. Sea Res., 18 (1984), 1: 13-30.
- 〔3〕 J. P. 赖利、G.斯基罗著, 刘光等译, 化学海洋学, 第一卷, 海洋出版社, 1982, 601-613.
- 〔4〕 于圣睿、孙秉一、南黄海溶解氧的分布与季节变化、山东海洋学院学报。10(1980)、2:81-90。
- 〔5〕 顾宏堪,黄海溶解氧垂直分布最大值,海洋学报,2(1980),2:70-78.
- 〔6〕 刁焕祥等、黄海冷水团与东海东北部溶解氧垂直分布最大值、海洋与湖沼论文集、1986、121-131。
- [7] Jenkins W. J. and J. C. Goldman, Seasonal oxygen cycling and primary production in the Sargasso Sea, J. Mar. Res., 43 (1985), 465-491.
- 「8〕 蒋国昌等,江浙近海水体中无机氮的分布特征,东海海洋、6(1988),3:59-67.