浅海潮致贯跃层混合效应*

杨殿荣 周德坚 张玉琳

(青岛海洋大学物理海洋研究所)

摘 要

根据在渤海石油平台上进行的为期两周的温跃层专题观测资料,对温跃层深度、上下两层海水的温度和盐度进行了数值模拟。本模式是以Stigebrandt模式 为基础,并根据研究海区的特点作了重要的补充。模拟结果与实际符合良好。证 明潮与风产生的联合卷挟作用,能产生很强的贯穿跃层的海水交换与混合。它使 浅海夏季温跃层以下海水温度升高,并使上层海水营养盐得到补充,对海洋物理 环境以及对海洋生物具有重要意义。

我们在研究黄、东海温跃层时发现,陆架海区温跃层深度明显地受到海底潮混合的影

图 1 观测平台位置

图 2 测站海洋温盐结构

本文于1989年6月19日收到,修改稿于1990年2月18日收到。

•毛天松、王建国参加了温跃层专题观测工作。

响(参见文献〔1〕)·为了进一步研究潮混合对温跃层的作用及其对海洋热盐结构的影响·我 们特在渤海石油平台进行了为期两周的综合性的连续观测,并根据观测资料进行了数值研 究,使我们对潮混合作用有了进一步认识·

观测平台位于渤海西部 (39°09′N, 119°42′E) (图 1)•水深27 m多,水清,流弱,潮 流不过 1 n mile/h,余流更小,表层平均6cm/s,下层4cm/s•观测期间天气稳定,风力小.一 般不超过 4级。混合层下有一强温盐跃层存在,温跃层平均强度2•5℃/m,盐 跃 层 初 达 0•3/m,以后逐渐减弱。两跃层位置重合,深8m左右。温盐基本上呈两层结构(图 2)•

温盐观测用国家海洋局海洋仪器研究所研制的便携式温盐深廓线仪,海流观测用 174型数字磁带记录式海流计,取5m和13m两层,风速用风杯式风速仪,湿度用毛发 湿度计(天津气象台观测)。

一、问题的提出

根据观测资料的计算,观测期间海洋热盐状况发生了如下变化:

1. 表层日平均温度升高2.9℃;

2. 下层日平均温度升高1.6℃;

3. 温跃层进一步加强,强度从开始的2.2℃/m增加到最后的2.8℃/m;

4. 下层海水盐度减低约0.5, 盐跃层强度明显减弱。

使人感兴趣的是第2和第4两点。强跃层被公认为湍流扩散的不可逾越的障碍,那么. 究竟是什么原因导致下层海水如此迅速的升温?又是什么原因使下层盐度减小,并使盐跃 层迅速减弱?

首先分析第一个问题。一般地说,使下层海水增温的过程有三:太阳辐射的透射作用, 水平平流和湍流热扩散。

太阳辐射确有部分能量透入下层 · 按公式 (5) 计算,其透入跃层以下的能量只占进 入海水的总辐射能的1 · 2%,约300 J,只能使其温度升高不到0 · 05℃,在观测误差范围之 内 ·

平流过程无疑会影响海洋的热状况,然而实测资料的分析表明,研究海区的余流很弱,如上指出,下层平均只有4cm/s,详见图 3,特别是如图所示,余流的方向基本指向东北,与等深线和等温线走向一致。由此我们判断,观测期间温度的平流效应甚微。

根据湍流理论,在层结流体中,只有当Richardson数充分小的条件下湍流才得以发生 和维持。我们根据跃层上下的实测流速流向以及温盐的垂直分布,计算了不同时刻的跃层 整体梯度 Richardson数,如图 4 所示。图中表明,整个观测期间,Richardson数一般都 在 4 以上,超过 20 的占1/4,最小值也超过 1,总之,远超过 Richardson数的临界值。这说 明不可能因剪切而使跃层产生湍流。当然,因小尺度内波而导致跃层内部K-H不稳定的 情况是可能的,但这是局部的、间隙性的,因此产生的湍流也是弱的。所以,直接通过湍流扩散过程向强跃层以下输送热量的可能性很小。

上面的分析当然同样适用于盐度,即平流及湍流扩散既不能解释下层盐度的降低,也

虚线表示超过20

不能解释盐跃层的减弱。表层盐度因蒸发而增高,这也许是跃层减弱的一个原因。确实, 观测期间没有任何降水,只有蒸发。但据计算,蒸发总量为1.7cm,只能使10m厚的水层 增盐0.05,没有实际意义。

显然,要合理地解释上述现象还须另找原因,其实这个原因并不难找,它就在大家都 熟悉的物理过程中,

众所周知、海洋表面混合层在大气强迫力作用下不断地对跃层上部进行湍流卷挟、同

时把跃层向下推.与此对应,在海底边界层、潮流产生的湍流亦将对跃层进行卷挟,并将

 跃层向上推,正是这两种方向相反的卷挟作用导致了上下两层海水之间的交换与混合。
 Stigebrandt⁽²⁾首先根据这一思想建立了一个数学模式,并在人为的简单条件下作

 了计算,本文的模式便是以此为基础,并根据观测海区的特点作了重要的扩展和补充。本

 文不仅计算了跃层深度和上下水层的温度,而且还计算了上下水层的盐度,并在所有方程

 中都考虑了盐度和光透射过程(以衰减系数)代表)的影响。关于这两个因子的重要性将

 在下节具体讨论。

二、 控制 方程

根据观测海区热盐结构的特点,我们采用比较简单的一维二层模式(图 5).基础方程 是常用的关于温、盐、浮力和湍能的守恒方程^{〔3〕}、为了讨论和阅读方便,现列出如下, 本文取 z 轴向上,一切通量均以向上为正,

$$\frac{\partial I}{\partial I} = -\frac{\partial \overline{w' T'}}{\partial z} - \frac{1}{\rho c} \frac{\partial I}{\partial z}, \qquad (1)$$

$$\frac{\partial S}{\partial t} = -\frac{\partial w' \overline{S'}}{\partial z} , \qquad (2)$$

$$\frac{\partial b}{\partial t} = -\frac{\partial \overline{w' b'}}{\partial z} - \frac{ga}{\rho c} \frac{\partial I}{\partial z}, \qquad (3)$$

$$\frac{\partial E_{t}}{\partial t} = -\overline{w'u'} \frac{\partial U}{\partial z} - \overline{w'v'} \frac{\partial V}{\partial z} + \overline{w'b'} - \frac{\partial}{\partial z} \left(\overline{w'E_{t}} + \frac{1}{\rho} \overline{w'p'} \right) - \varepsilon .$$
(4)

在上面的方程组中未考虑上升流影响,因为观测海区当时 并不存在产生上升流的条件;并且认为湍流是均匀各向同 性的・方程中的T、S、b分别表示海水的温盐和浮力, I为太阳透射的辐照度,ρ为海水密度, c为海水比热, a为海水热膨胀系数、U、V、W为流速的x、y、z方 向的分量、p为压强,所有带撇号的均为该量的 脉动值, E_i为单位质量海水的湍能。

| 对式(1)从 – h 到 0 积分,并取

图 5 两层模式示意图

$$I = I_0 e^{yz}$$
. (5)

式中, 10 为海面太阳辐照度, 则得

$$\frac{\partial T_{1}}{\partial t} = -\frac{1}{h_{1}} \left[\frac{1}{\rho c} (H_{b} + H_{s} + H_{e}) + \rho c (T_{1} - T_{2}) w_{e1} \right]$$

à

$$+\frac{1}{\rho c} I_0 (1 - e^{-t h_1})], \qquad (6)$$

式中, H_b、H_s、H_e分别为海面的有效回辐射、显热通量和潜热通量, wei为跃层向上的卷 挟速度.

同样对式(2)积分得

$$\frac{\partial S_1}{\partial t} = -\frac{1}{h_1} \left[(P - E) S_1 + (S_1 - S_2) w_{e_1} \right], \qquad (7)$$

式中, P和E分别为海面的降水量和蒸发量, 均取正值.

同样,分别对式(1)和(2)从-D到-h积分,得

$$\frac{\partial T_2}{\partial t} = \frac{1}{D - h_1} \left[(T_1 - T_2) w_{e2} - \frac{1}{\rho c} I_0 e^{-\gamma h_1} \right], \qquad (8)$$

$$\frac{\partial S_2}{\partial t} = \frac{1}{D - h_1} (S_1 - S_2) w_{e2}, \qquad (9)$$

式中,we2 为跃层向下卷挟速度·上面公式中的 T₁、T₂、S₁、S₂、h、h₂和 D 均见图 5 所示· 下面的公式(10)和(11)直接引自文献[1].

$$w_{e_{1}} = \frac{2}{gh_{1}[a(T_{1}-T_{2})-\beta(S_{1}-S_{2})]} \left\{ \frac{\rho_{a}}{\rho} mC_{10} U_{10}^{3} + \frac{g}{2\rho} \left[\frac{a}{c} (I_{0} + H_{b} + H_{s} + H_{e}) - \beta\rho(P - E)S_{1} \right] h_{1} - \frac{ga}{\rho c} \left[\frac{I_{0}}{\gamma} - I_{0} e^{-\gamma h_{1}} \left(\frac{h_{1}}{2} + \frac{1}{\gamma} \right) \right] \right\},$$
(10)

式中的 ρ_a 为空气密度, m为常数, $\beta = \frac{1 d\rho}{\rho \partial S}$.

$$w_{e2} = -\frac{2}{\Delta \rho g h_2} m_b \rho C_b^{3/2} U_b^3, \qquad (11)$$

式中, Δρ为两层海水密度差, Cb为海底阻力系数, Ub为底层流速, mb为常数。 根据文献〔2〕,温跃层深度随时间变化的方程为:

$$\frac{\partial h_1}{\partial t} = \Lambda w_{e1} - w_{e2}, \qquad (12)$$

⊿定义为:

$$\Lambda = \begin{cases} 1, & w_{e_1} > 0, \\ 0, & w_{e_1} < 0. \end{cases}$$

利用式(6)--(12)便可计算不同时刻上下两层海水的温度和盐度以及跃层深度。 式中各参量取值如下:

$$\beta = 7.36 \times 10^{-4}$$
. $\rho = 1.021 \text{g/cm}^3$,

 $m_{\rm b} = 1.25$.

上面方程组与Stigebrandt的相比,多了(7)、(9)两个方程,并且增加了与盐度 差、衰减系数及降水蒸发等有关的若干项。下面将这些项的作用以量级上作一估算。

在式 (10) 中. $T_1 - T_2$ 、 $S_1 - S_2$ 分别取其中间值 6°C和 - 0.7, U_{10} 取较大值 650cm/s, I_0 取平均直1.6J/(min·cm²), $h_1 = 800$ cm, P = 0, E取平均值0.14cm/d.由式(10)得: 海面盐通量项与热通量项比为1:57; 含 e 负指数的项与 $\frac{I_0}{\gamma}$ 项相比为1:18; 含 $T_1 - T_2$ 的 项与含 $S_1 - S_2$ 项同量级, 当不考虑盐度差项时, wei 将增大30%; 风、热通量及透射效应 $\left(\frac{I_0}{\gamma}\right)$ 对湍能之贡献之比为0.8:-0.8:0.4, 它们具同量级.

考虑透射效应与不考虑透射效应时 we1 的比值为22.8:1,即透射效应使上层卷 挟速度 增大近22倍。

根据上面的估算可以得出结论,海面盐通量项及含 e 负指数的项均为小量;盐度差对 上层卷挟速度有显著影响;透射效应对卷挟速度的影响更大。尤其重要的是,它们不仅直 接影响 w_{e1} 的量值,而且通过 w_{e1} 影响 T_1 和h(当然也有 h_2),而通过h 和 h_2 ,又影响 w_{e2} , 从而影响 T_2 和 S_2 。所以这两项因子极大地影响着本模式所计算的一切物理量。例如,按上 面给出的数据,由式(11)和(12)(流速取中值 $U_b = 20 \text{ cm/s}$),则其深度h为9m、 w_{e1} = $w_{e2} = 3.2 \times 10^{-4} \text{ cm/s}$ 。如果不计透射效应,则 w_{e1} 便减为 - 0.80 × 10⁻⁴ cm/s.因此平衡 打破,跃层将上升。随之 w_{e1} 增大, w_{e2} 减小,直到 $h_1 = 6m$ 时又达到新的平衡。根据公式 (6)一(9),由于跃层从深度9m上升到6m,使 T_1 和 S_1 的上升速率都增大50%,而使 T_2 的上升速率和 S_2 下降速率都减小14%。

总之,盐度效应和透射效应在本模式中都很重要,尤其是后者。可以想见,如果 > 的 量值更小,就像黄、东海绝大部分海区那样,则透射效应就更不可低估了。

三、资 料

流速资料取13m层的实测值(见图 6)。

图 6 13 m 层的流速实测值

我们工作的平台实际上是由大致东西向的两个平台组成,中间以过桥相连。我们的风 速仪就安在过桥中间,高13m。因此,只有南北向的风资料才比较可靠,东西向的风由于 受平台影响较大,故不能用。幸好天津气象台在28m高处设有一个风速仪。所以,我们用 28m高处风速和13m高处的比较可靠的风速资料为基础,根据边界层理论加以订正,求出 了10m高处的风速(图7)。

鉴于观测期间气温一般都低于水温,表面层大气呈弱不稳定层结,故动量交换系数取 值略大于中性情况,取C₁₀ = 1.6×10⁻³.其他湍流热交换系数C₅和湍流水汽交换系数€_e, 参照文献〔4〕,分别取为1.1×10⁻³和1.2×10⁻³.

长波辐射据 Budyko 公式 [4],太阳辐射依据 Payne [5]方法计算(图 8).

图 8 进入海水的太阳辐射能

计算期间(自7月22日12时至8月3日10时)太阳辐射总量约28kJ,蒸发约4kJ,长 波辐射和显热通量均约3kJ.所以在大气强迫力中,是太阳辐射和风起主导作用。

四、计算结果及讨论

根据上述模式和资料,我们计算了该测站上下两层海水的温度、盐度和跃层深度随时 间的变化。

图 9 是海水温度的实测值和计算值. 图中表明, 在上层水温升高的同时, 下层水温也

相当迅速地上升·两层海水温度上升的量值及其变化趋势与实际符合的程度相当好(下层 水温的短周期变化主要由潮流引起)·如果不考虑潮混合而用通常的模式计算,则温度的升 高将集中于上层,下层温度基本不变.可见潮混合在其中起了关键的作用.

当然,对温度变化起作用的物理过程同样也将反映在盐度的变化上。遗憾的是仪器对 盐度不够稳定,尤其是表层。所以在图10中,表层资料未给出。图中实测和计算所反映的 下层盐度随时间逐渐减小的趋势是基本一致的,仅最后几天,实测的减小速率比计算值明 显加快。

与盐度观测的绝对值相比,相对值更可信.在图11中,我们分别画出了上下两层盐度 差(ΔS)的实测值和计算值随时间的变化曲线.实测资料表明,盐度差具有随时间不断 减小的明显趋势,开始在0.9-1.0之间,最后减小到在0.5-0.6之间、几乎减小了一半. 因为跃层厚度变化不大,所以盐跃层强度也有相应变化.图中表明,无论是量值还是变化 趋势,计算结果与实测结果之间都具有较好的一致性.

由于观测期间天气平稳,风力微弱,跃层深度变化甚小(不计内波影响),在这种情况 下对深度的数值模拟显然意义不大。从数值模拟的结果看,跃层深度有逐渐减小的趋势。 考虑到当时大气强迫作用的特点,此趋势是合理的.实测结果虽因内波干扰而表现得较乱, 但这个逐渐减小的趋势仍较明显。要说明的是观测仪器的深度记录也曾发现漂移,7月26 日至28日三天实测值突然减小的现象可能与此有关。

· 16 0 8 16 0

图12 温跃层深度的实测值(折线)与计算值(曲线)

总之,通过上面对数值模拟结果和实测结果的对比分析可以认为,数值模拟基本上正确地反映了实际海洋的情况。这证明,模式所描述的物理过程是正确的。也就是说,在研究海区,位于强跃层之下的冷水的显著增温现象是底边界层的潮生湍流对温跃层的卷挟作用所致。这种卷挟作用与大气强迫所产生的上部卷挟作用相结合,便使上层暖而淡的水向下扩散和下层冷而咸的水向上扩散同时进行;在使下层水发生增温减盐的同时,却使上层水发生降温增盐的相反过程,最终的结果则是使温跃层和盐跃层均趋减弱。这似乎与表层增温和温跃层加强的现象矛盾,其实是由于海面极大的热通量造成的升温和使温跃层增强的过程掩盖了上述混合效应所致。至此,本文开头提出的似乎互不相关的关于上层和下层、温度和盐度的变化现象,在此获得了统一的解释。

在研究海区,虽然潮流不强,但这种贯穿跃层的交换对温度的作用,仍与整体湍流热 扩散系数为2×10⁻¹ cm/s的湍流热交换过程相当.由此看到,在被强跃层隔开的两层海水 之间,并不像通常认为的那样不存在有效的交换和混合过程,恰巧相反,这种过程在潮流 较强的浅水区将是相当强的.它对海洋的物理环境有重要影响.特别值得注意的是,这一 过程能使得上层暖水的营养盐源源不绝地从下层获得补充,因此对海洋生物和水产无疑具 有重要意义,值得进一步研究.

参考文献

〔1〕 杨殿荣等,黄、东海夏季温跃层的诊断研究,海洋学报,12(1990),1:14-23.

(**m**)

- (2) Stigebrandt, A., Cross thermocline flow on continental shelves and the locations of shelf fronts, Ecohydrodynamics, Elsevier Scientific Publishing Company, 1981.
- (3) Niller, P.P. and E. B. Kraus, One dimensional models of the upper ocean, Modeling and Prediction of the Upper Layers of the Ocean, Pergamon Press, 1977.
- [4] Smith, S. D. and F. W. Dobson, The heat budget at ocean weather station Bravo, Atmosphere - Ocean, 22 (1984), 1, 1-22.