第 35 卷 第 5 期	海	洋	学	报	Vol. 35, No. 5
2013年9月	ACTA O	CEANO	LOGICA	A SINICA	September 2013

doi. 10. 3969/j. issn. 0253-4193. 2013. 05. 015

申欣,田美,孟学平,等. 棘皮动物线粒体基因组的基因重排、分子标记及系统发生分析[J]. 海洋学报,2013,35(5):137—146. Shen Xin, Tian Mei, Meng Xueping, et al. Gene rearrangement, molecular markers and phylogenetic analyses of echinoderms mitochondrial genomes[1]. Acta Oceanologica Sinica(in Chinese),2013,35(5):137—146.

棘皮动物线粒体基因组的基因重排、 分子标记及系统发生分析

申欣^{1,2},田美¹,孟学平¹,程汉良¹,阎斌伦¹

(1. 淮海工学院 海洋学院,江苏省海洋生物技术重点实验室,江苏 连云港 222005;2. 中国科学院 北京生命科学研究 院,北京 100101)

摘要:棘皮动物(echinoderms)是海洋生境中所特有的无脊椎动物重要类群,本文全面比较分析了棘 皮动物 29 个物种的线粒体全基因组。线粒体基因组主编码基因的分析结果显示,海胆纲 Echinoidea 和海参纲 Holothuroidea 物种的基因排列完全相同;海星纲 Asteroidea 物种之间的基因排列也完全相 同,然而与海胆纲、海参纲相比,存在一个长片段的倒位。海百合纲 Crinoidea 的栉羽星 Phanogenia gracilis 和花形羽枝 Florometra serratissima 主编码基因的基因排列完全相同,地中海海羊齿和海百合 Neogymnocrinus richeri 与此相比,均存在一个蛋白质编码基因(nad4L)的易位。蛇尾纲 Ophiuroidea 真蛇尾目 Ophiurida 的 3 个科(阳遂足科 Amphiuridae、辐蛇尾科 Ophiactidae 和栉蛇尾科 Ophiocomidae)主编码基因的基因排列完全相同,而同属于真蛇尾目,另外一个科(真蛇尾科 Ophiuridae)的白色真 蛇尾 Ophiura albida 和灰色真蛇尾 Ophiura lutkeni,与同目的前3个科相比,存在3个蛋白质编码基 因(nad1,nad2 和 cob)的倒位。蛇尾纲蔓蛇尾目 Euryalida 的海盘 Astrospartus mediterraneus,与真蛇 尾目5个线粒体基因组相比,存在主编码基因的重排。棘皮动物线粒体单基因的变异位点特征显示, nad5、nad4 和 nad2 基因是理想的分子标记基因。基于 29 个线粒体基因组的氨基酸序列,通过两种 方法(邻接法和最大似然法)所构建系统发生树的拓扑结构完全一致。支持其下分的5个纲(蛇尾纲、 海参纲、海胆纲、海星纲和海百合纲)均为单系群。线粒体基因组的数据支持棘皮动物动物在纲层次 的亲缘关系为:(((海胆纲+海星纲)+海参纲)+蛇尾纲)+海百合纲,海百合纲作为棘皮动物中最为 古老的类群,位于系统发生树的根部。基于线粒体基因组构建的系统发生树,支持所有的科均为单系 群;综合系统发生树及主编码基因的基因重排分析,均支持真蛇尾目并非单系发生,真蛇尾目的有效 性还值得今后深入研究。

关键词:线粒体基因组;蛋白质编码基因;基因重排;分子标记;系统发生;棘皮动物 中图分类号:Q915.821 **文献标志码:**A **文章编号:**0253-4193(2013)05-0137-10

收稿日期:2012-12-05;修订日期:2013-05-17。

基金项目:国家自然科学基金(40906067);香江学者计划(XJ2012056);中国博士后科学基金(2012M510054,2012T50218);中央财政支持地方高 校发展专项资金(CXTD04,CXTD01);江苏省海洋生物技术重点实验室资助项目(2009HS13、2011HS009);江苏省"青蓝工程"人才基金资助项目 (苏教师[2010]27号);江苏高校优势学科建设工程资助项目。

作者简介:申欣(1981—),男,山东省成武县人,副教授,博士,研究方向:基因组学和分子系统学。E-mail:shenthin@163.com

1 引言

棘皮动物(echinoderms)是海洋生境中所特有的 无脊椎动物重要类群,通常下分5个纲:海星纲 Asteroidea、蛇尾纲 Ophiuroidea、海胆纲 Echinoidea、海参纲 Holothuroidea 和海百合纲 Crinoidea^[1-2]。棘皮动物 的化石记录可以追溯至五亿多年前的寒武纪,其化石 种类接近13000种。棘皮动物现存种类数目繁多, 全球约7000余种,其内部各类群之间的系统发生关 系也是动物分类学中的一个经典难题[1,3];与此同时, 棘皮动物的分布范围非常广泛,从潮间带到数千米的 深海,从赤道到极地均有分布,在海洋生态系统中占据 重要位置;另外,棘皮动物中还包含众多的经济物种, 在渔业资源、活性物质开发和水产养殖中占据一定的 地位。后生动物基因组包括核基因组和线粒体基因 组,线粒体基因组具有进化速率稳定和基因排列紧凑 等优点,被广泛应用到后生动物种群遗传、生物地理及 系统发生的研究中。本文系统分析比较了棘皮动物现 有的29个物种线粒体基因组,为这一海洋特有的重要 生物类群资源保护和利用提供宝贵的基础资料。

2 材料和方法

2.1 数据检索与获取

登陆 GenBank 基因组数据库,通过关键词"echinoderms"检索获得所有棘皮动物线粒体基因组。包 括蛇尾纲的海盘 Astrospartus mediterraneus、白色真 蛇尾 Ophiura albida、灰色真蛇尾 Ophiura lutkeni、小 双鳞蛇尾 Amphipholis squamata、尖棘紫蛇尾 Ophiopholis aculeata 和黑仿栉蛇尾 Ophiocomina nigra;海 星纲的砂海星 Luidia quinalia、多棘槭海星 Astropecten polyacanthus、赭色豆海星 Pisaster ochraceus、 多棘海盘车 Asterias amurensis、海燕 Patiria pectinifera、棘冠海星 Acanthaster planci 和长棘海星 Acanthaster brevispinus;海胆纲的拟球海胆 Paracentrotus lividus、绿棘球海胆 Strongylocentrotus droebachiensis、白棘球海胆 Strongylocentrotus pallidus、紫棘球海 胆 Strongylocentrotus purpuratus、阿巴海胆 Arbacia lixula 和心形海胆 Echinocardium cordatum;海参纲 的福氏海参 Holothuria forskali、仿刺参 Apostichopus japonicus、拟刺参 Parastichopus nigripunctatus、糙刺 参 Stichopus horrens、刺参 Stichopus sp. SF-2010 和 瓜参 Cucumaria miniata;以及海百合纲的栉羽星 Phanogenia gracilis、地中海海羊齿 Antedon mediterranea、花形羽枝 Florometra serratissima 和海百合 Neogymnocrinus richeri^[3-17]。

2.2 基因排列分析

由于转运 RNA(tRNA)基因发生易位或丢失的 频率较高,因此,在较高阶元基因组的基因排列比较 中,针对主编码基因(蛋白质编码基因和核糖体 RNA 基因)的基因排列所进行的比较分析,就显得更加有 价值。本文针对 29 个棘皮动物线粒体基因组主编码 基因的基因排列进行了系统的分析比较。

2.3 变异位点与分子标记基因分析

综合分析 29 种棘皮动物线粒体基因组,计算棘皮 动物门内单基因的变异位点;并且基于蛇尾纲和海百合 纲线粒体基因组数据,分别计算两个纲内部的单基因变 异位点。结合海星纲、海胆纲和海参纲的基因变异位点 分析结果,全面揭示棘皮动物线粒体基因组的变异位点 分析结果,全面揭示棘皮动物线粒体基因组的变异位点 特征,以此确定合适的分子标记基因。借助于 Clustal X 2.0^[18]对所有蛋白质编码基因(*atp*6,*atp*8,*cob*,*cox*1-3, *nad*1-6和 *nad*4L)的核苷酸序列,分别做多重序列比对。 借助于 DnaSP 5.10.01^[19]分析棘皮动物门内,以及蛇尾 纲、海百合纲内部单基因的变异位点。

2.4 系统发生分析

所有蛋白质编码基因(cox1-3、cob、nad1-4、 nad4L、nad5、nad6、atp6和 atp8)的氨基酸序列首尾 相连后,借助于 Clustal X 2.0^[18]做多重序列比对。 对于多重序列比对结果,分别借助于邻接法(Neighbour Joining, NJ)与最大似然法(Maximum Likelihood, ML)进行系统发生关系重建。邻接法使用的软 件为 MEGA 5.1^[20],最大似然法使用的软件为 PhyML 3.0^[21]。在系统发生树构建时,使用自展值 (Bootstrap=100)检验法,来评估系统发生树中每个 分支的可靠性。

3 结果和讨论

3.1 基因重排

所有海胆纲物种和海参纲物种线粒体基因组主 编码基因的基因排列均完全相同,为:cox1-nad4Lcox2-atp8-atp6-cox3-nad3-nad4-nad5-<u>nad6-cob-sr-</u> RNA-nad1-nad2-lrRNA(下划线标示的基因在负链 上编码,下同)。海星纲7个物种线粒体基因组主编 码基因的基因排列完全相同,为:cox1-nad4L-cox2atp8-atp6-cox3-nad3-nad4-nad5-<u>nad6-cob-srRNAlrRNA-nad2-nad1</u>。与海胆纲、海参纲线粒体基因组 的基因排列相比,海星纲物种线粒体基因组中存在一 个长片段的倒位(包括 2 个蛋白质编码基因和 1 个核 糖体 RNA 基因:*lrRNA-nad2-nad1*)(图 1)。

蛇尾纲真蛇尾目的三个科(阳遂足科、辐蛇尾科 和栉蛇尾科)主编码基因的基因排列完全相同:cox1nad4L-cox2-atp8-atp6-cox3-nad3-nad4-nad5-nad6 -<u>lrRNA-srRNA-cob-nad2-nad1</u>。而同属于真蛇尾 目,另外一个科(真蛇尾科)的白色真蛇尾和灰色真蛇 尾,与同目的前3个科相比,存在3个蛋白质编码基 因(nad1、nad2和 cob)的倒位。蔓蛇尾目的海盘,与 真蛇尾目5个线粒体基因组相比,存在多个主编码基 因的重排。蛇尾纲 6 个物种线粒体基因组共享的基因排列为: cox1-nad4L-cox2-atp8-atp6-cox3-nad3-nad4-nad5-nad6(图 1)。

海百合纲海羊齿目的栉羽星和花形羽枝主编码 基因的基因排列完全相同,为: cox1-nad4L-cox2atp8-atp6-cox3-nad3-nad4-nad5-nad6-cob-srRNAlrRNA-nad2-nad1。地中海海羊齿和海百合 Neogymnocrinus richeri 与此相比,分别存在一个蛋白质 编码基因(nad4L)的易位(图1)。

多棘海盘车 Asterias amurensis、多棘槭海星 Astropecten polyacanthus、赭色豆海星 Pisaster ochraceus、砂海星 Luidia quinaria、长棘海星 Acanthaster brevispinus、棘冠海星 Acanthaster planci、海燕 Patiria pectini fera (海星纲):

|--|

小双鳞蛇尾 Amphipholis squamata(蛇尾纲:真蛇尾目:阳遂足科)、尖棘紫蛇尾 Ophiopholis aculeata(蛇尾纲:真蛇尾目:辐蛇尾科)、黑仿栉蛇尾 Ophiocomina nigra(蛇尾纲:真蛇尾目:栉蛇尾科):

cox1	nad4L	cox2	at p8	at p6	cox3	nad3	nad4	nad5	<u>nad6</u>	<u>lrRNA</u>	<u>srRNA</u>	<u>cob</u>	<u>nad2</u>	<u>nad1</u>
白色真蛇	尾 Ophiur	a albida 🏹	灰色真蛇	芼 Ophiuro	a lutkeni (!	蛇尾纲:真	.蛇尾目:〕	真蛇尾科)	:					
cox1	nad4L	cox2	at p8	at p6	cox3	nad3	nad4	nad5	<u>nad6</u>	<u>lrRNA</u>	<u>srRNA</u>	nad1	nad2	cob
海盘 Astr	ospartus n	vediterran	eus(蛇尾纟	冈:蔓蛇尾	目):									
cox1	nad4L	cox2	at p8	at p6	cox3	nad3	nad4	nad5	<u>nad6</u>	<u>srRNA</u>	<u>lrRNA</u>	<u>cob</u>	<u>nad2</u>	<u>nad1</u>
心形海胆	Echinocar	rdium cora	latum、阿日	巴海胆 Ar	bacia lixu	la、拟球海	胆 Parace	entrotus liv	vidus、绿棘	棘球海胆.	Strongyloc	entrotus d	roebachien	sis、白棘球
海胆 Stro	ngylocentr	otus pallio	dus、紫棘到	球海胆 Sti	rongylocen	itrotus pur	puratus (海胆纲);	福氏海参	Holothur	ia forskali	、仿刺参	Aposticho	pus japoni-
cus、拟刺	参 Parastic	chopus nig	ri punctati	us、糙刺参	Stichopus	s horrens	刺参 Stich	nopus sp.	SF-2010	、瓜参Cua	cumaria m	iniata(海	参纲):	
cox1	nad4L	cox2	at þ8	at p6	cox3	nad3	nad4	nad5	nad6	cob	srRNA	nad1	nad2	lrRNA
栉羽星 P	hanogenia	gracilis	花形羽枝	Florometro	a serratissi	ima(海百·	合纲):							
cox1	nad4L	cox2	at p8	at p6	cox3	nad3	nad4	nad5	nad6	cob	<u>srRNA</u>	<u>lrRNA</u>	<u>nad2</u>	<u>nad1</u>
地中海海	羊齿 Ante	don medit	erranea (海	每百合纲)	:									
cox1	cox2	at p8	at p6	cox3	nad3	nad4	nad4L	nad5	nad6	cob	<u>srRNA</u>	<u>lrRNA</u>	nad2	<u>nad1</u>
海百合 N	eogymnoci	rinus riche	ri(海百合	纲):										
cox1	cox2	at p8	at p6	nad4L	cox3	nad3	nad4	nad5	nad6	cob	srRNA	lrRNA	nad2	nad1

图 1 棘皮动物 29 个物种线粒体基因组的基因排列比较(不包含转运 RNA 基因)

负链上编码的基因以下划线标示;各纲内部发生重排的基因以阴影标示

当前的数据资料显示,在蛇尾纲与海百合纲内 部,基因排列顺序并不保守;海胆纲与海参纲物种主 编码基因的基因排列完全一致,海星纲物种线粒体基 因组与此相比,存在一个长片段的倒位。棘皮动物门 现存 7000 多个物种,当前本类群线粒体基因组的信 息仍然较为有限,还无法提供较深层次的系统发生信 息。但可以预测,当越来越多棘皮动物线粒体基因组 被完成时,基因重排可能会成为探讨棘皮动物内部系 统发生关系的重要信息来源。

3.2 蛋白质编码基因

在13个蛋白质编码基因中,有7个基因(cox1-

3、cob、nad3、nad4和 nad6)使用"ATN"作为起始密码 子;其余6个基因(nad1、nad2、nad4L、nad5、atp6和 atp8)存在"ATN"之外的起始密码子(如"GTG"等)。 6个基因(cox3、nad3、nad4L、nad6、atp6和 atp8)在所 有棘皮动物中,均使用完全终止密码子("TAA"或 "TAG");除此之外,其余7个基因(cox1、cox2、cob、 nad1、nad2、nad4和 nad5),在部分物种中存在不完全 终止密码子("TA—"或"T—")的现象(见表1)。虽 然在近缘类群之间,同一蛋白质编码基因所编码的氨 基酸数目较为保守,然而,在棘皮动物门的层次上,所 有13个蛋白质编码基因的氨基酸数目均存在一定差

		表1 刻	棘皮动物	线粒体書	ţ因组 13	个蛋白/	贡编码基	因的基本	本特 征						
物种名称	接收号		cox1	cox2	cox3	cob	nad1	nad2	nad3	nad4	nad4L	nad 5	nad6	at p 6	atp8
		NO.	516	229	259	379	325	353	116	460	95	638	162	230	55
Asterias amurensis 夕輔治 年 左	NC_006665	I codon	ATG	ATG	ATG	ATG	GTG	GTG	ATG	ATG	ATG	ATG	ATG	ATG	ATG
罗 莱琼坦牛		T codon	TAA	TAA	TAA	- H	\mathbf{TAA}	\mathbf{TAA}	\mathbf{TAA}	\mathbf{TAA}	\mathbf{TAA}	TAA	TAG	TAA	TAA
-		NO.	517	229	260	379	324	353	116	460	98	639	162	228	55
P is a ster och race us $rac{1}{44}$ $R_{ m r}$ $orall rac{1}{8}$ ert	NC_004610	I codon	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATT	ATG	ATG	ATG	ATG
婚世모時生		T codon	TAA	TAA	TAA	- T	TAA	TAG	TAG	TAA	TAA	TAG	TAA	TAA	TAA
		NO.	517	229	260	379	325	355	116	459	98	634	163	230	55
Astropecten potyacanthus を構む法言	NC_006666	I codon	ATG	ATG	ATG	ATG	ATG	GTG	ATT	ATG	ATT	ATG	ATG	ATG	ATG
多棵酸時年		T codon	TAA	T^{-}	$\mathbf{T}\mathbf{A}\mathbf{A}$	$^{\rm L}$	_ T	TAA	TAA	TAA	\mathbf{TAA}	\mathbf{TAA}	\mathbf{TAA}	TAA	TAA
		NO.	517	230	260	379	325	355	116	459	98	636	163	230	55
Luidia quinalia zhi続目	NC_006664	I codon	ATG	ATG	ATG	ATG	GTG	GTG	ATT	ATG	ATT	ATG	ATG	ATG	ATG
吵碎生		T codon	TAA	TAG	$\mathbf{T}\mathbf{A}\mathbf{A}$	Τ	TAG	\mathbf{TAA}	TAG	TAA	\mathbf{TAA}	TAA	TAA	TAA	TAA
		NO.	517	229	260	379	326	354	116	460	98	633	162	230	54
Acantnaster orevispinus 互柄运員	NC_007789	I codon	ATG	ATG	ATG	ATG	GTG	ATG	ATT	ATG	ATT	ATG	ATG	ATG	ATG
人体吗在		T codon	TA-	$\mathrm{T}-$	TAA	$\mathrm{T}-$	TAG	TAG	TAA	TAG	TAA	TAA	TAG	TAA	TAA
		NO.	517	229	260	379	326	354	116	460	98	633	162	230	54
Acannaster poance 曲窗渔员	NC_007788	I codon	ATG	ATG	ATG	ATG	GTG	ATG	ATT	ATG	ATT	ATG	ATG	ATG	ATG
₩/ \@ \\$\ \@		T codon	TA-	T^{-}	TAA	T^{-}	TAG	TAG	TAA	TAA	TAA	TAA	TAG	TAA	TAA
		NO.	517	229	260	379	326	354	110	460	98	643	162	230	54
<i>Patırıa pectımı fera</i> 海南	NC_001627	I codon	ATG	ATG	ATG	ATG	GTG	ATG	ATT	ATG	ATT	GTG	ATG	ATG	ATG
NY 401		T codon	TAA	T^{-}	$\mathbf{T}\mathbf{A}\mathbf{A}$	T^{-}	TAG	\mathbf{TAA}	TAG	TAA	\mathbf{TAA}	TAA	TAA	TAA	TAA
Astrospartus mediterra-		NO.	532	229	264	381	330	354	117	457	98	589	159	230	53
neus	NC_013878	I codon	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG
海盘		T codon	TAG	TAA	$\mathbf{T}\mathbf{A}\mathbf{A}$	TAA	TAA	\mathbf{TAA}	TAA	TAG	\mathbf{TAA}	TAA	TAG	TAA	TAA
		NO.	534	230	265	380	333	351	117	453	98	595	158	233	53
Opniura ainiaa 占在古松园	NC_010691	I codon	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG
DDARF		T codon	TAA	TAA	TAA	TAG	TAA	TAG	TAA	TAG	TAA	TAA	TAA	TAA	TAA
		NO.	534	237	265	380	333	351	117	453	98	262	159	235	55
Opniura tutkeni 七角 古松 民	NC_005930	I codon	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG
火 口長18.14		T codon	TAA	T^{-}	TAA	T^{-}	TAA	\mathbf{TAA}	TAA	\mathbf{TAA}	TAA	TAA	TAG	TAA	TAA
															(续表)

海洋学报 35卷

					续表	-									
物种名称	接收号		cox1	cox2	cox3	cob	nad1	nad2	nad3	nad4	nad4L	nad 5	nad6	at p 6	at p8
		NO.	533	229	265	391	330	346	119	448	98	596	161	227	41
Ampni pnotis squamata 小 亚 線 中江 尻	NC_013876	I codon	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	TTG	GTA
		T codon	TAA	TA-	TAA	TAA	TAA	TAA	TAA	TAA	\mathbf{TAA}	TAG	TAA	TAA	TAA
		NO.	528	231	264	381	332	352	114	452	96	593	159	227	57
Ophropholts acuteate 小	NC_005334	I codon	ATC	ATG	ATG	ATG	ATT	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG
大樑杀點甩		T codon	T^{-}	TAA	TAA	- T	$^{-}$	TAG	\mathbf{TAA}	TAA	TAA	TAG	TAA	TAA	TAA
		NO.	529	229	265	398	330	347	117	456	98	596	152	230	54
Ophiocomma mgra 岡 在 掛於 同	NC_013874	I codon	ATG	ATG	ATG	ATG	GTG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG
示。[D] 作P 36 户已		T codon	T^{-}	TAA	$\mathbf{T}\mathbf{A}\mathbf{A}$	TAA	TAG	TAG	TAA	TAG	\mathbf{TAA}	TAA	TAA	TAG	TAA
		NO.	517	229	260	380	323	352	116	470	67	640	162	231	55
Echinocardium cordatum Алт Ма	NC_013881	I codon	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATC	ATG	ATG	ATG	GTG
心心体阻		T codon	TAG	TAA	TAA	TAA	TAA	TAA	\mathbf{TAA}	TAG	TAA	TAG	TAG	TAA	TAA
		NO.	516	229	260	380	323	351	116	461	67	638	162	231	54
Arbacta lt.xuta 西百四海 田	NC_001770	I codon	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATT	ATG	ATG	ATG	GTG
四百百百		T codon	\mathbf{TAA}	TAG	$\mathbf{T}\mathbf{A}\mathbf{A}$	TAA	TAG	TAA	TAA	TAG	TAA	TAA	TAA	TAA	TAA
- - - - - -		NO.	517	229	260	380	323	352	116	463	26	638	160	232	54
F aracentrot us trota us 却 种欲症 HH	NC_001572	I codon	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATC	ATG	ATG	ATG	GTG
J.Y.Y.Y. 147 11日		T codon	TAA	TAA	TAA	T^{-}	TAA	TAG	TAG	TAG	\mathbf{TAA}	TAG	TAG	TAA	TAA
Strongylocentrotus droe-		NO.	517	229	260	380	323	352	116	462	67	639	165	227	54
bachiensis	NC_009940	I codon	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATC	ATG	ATG	ATA	GTG
绿棘球海胆		T codon	TAA	TAA	TAA	TAG	TAA	TAG	TAG	TAG	TAA	TAA	TAA	TAA	TAA
Strongylocentrotus palli-		NO.	517	229	260	380	323	352	116	462	26	639	165	229	54
dus	NC_009941	I codon	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATC	ATG	ATG	ATG	GTG
白棘球海胆		T codon	TAA	\mathbf{TAA}	TAA	TAG	TAA	TAG	TAG	TAG	TAA	TAA	TAA	TAA	TAA
Strongylocentrotus pur-		NO.	517	229	260	380	322	352	116	462	67	637	165	231	55
puratus	NC_001453	I codon	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATC	ATG	ATG	ATG	GTG
紫棘球海胆		T codon	TAA	TAA	TAA	TA-	TAA	TAG	TAA	TAG	TAA	TAA	TAA	TAA	TAA
$H_{\alpha}I_{\alpha}I_{\alpha}\cdots I_{\alpha}I_{\alpha}I_{\alpha}I_{\alpha}I_{\alpha}I_{\alpha}I_{\alpha}I_{\alpha}$		NO.	518	229	260	380	323	347	114	454	98	610	162	227	54
H01011111111 J015Katt1 垣氏渔条	NC_013884	I codon	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG
「田乙中多		T codon	TAA	T^{-}	TAA	TAA	TAA	TAA	TAA	TAG	TAA	TAA	TAG	TAA	TAA
															(续表)

141

					续表	1									
物种名称	接收号		cox1	cox2	cox3	cob	nad1	nad2	nad3	nad4	nad4L	nad 5	nad6	at p 6	atp8
		NO.	517	229	260	381	323	347	114	456	98	611	162	227	55
A posticho pus ja ponicus सन्मा उ	NC_012616	I codon	ATG	ATG	ATG	ATG	GTG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG
()) 利多		T codon	TAA	TAA	TAA	TAG	TAA	TAA	\mathbf{TAA}	TAG	\mathbf{TAA}	TAA	TAG	TAA	TAA
Parastichopus nigripunc-		NO.	517	229	260	381	323	347	114	456	98	611	162	227	55
tatus	NC_013432	I codon	ATG	ATG	ATG	ATG	GTG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG
拟刺参		T codon	TAA	TAA	TAA	TAG	TAA	TAA	TAA	TAG	TAA	Τ-	TAG	TAA	TAA
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		NO.	517	229	260	380	323	348	114	456	98	614	162	227	58
Olicho pus horrens wt 市(会	NC_014454	I codon	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG
位利少		T codon	TAA	TAA	TAA	\mathbf{TAA}	TAA	TAA	TAG	TAG	\mathbf{TAA}	TAA	TAA	TAA	TAA
0010 0010		NO.	517	229	260	380	323	344	114	456	98	614	162	227	58
Ditchopus sp. Dr — Z010 相会	NC_014452	I codon	ATG	ATG	ATG	ATG	GTG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG
		T codon	TAA	TAA	TAA	TAA	TAA	TAA	TAG	TAG	\mathbf{TAA}	TA-	TAA	TAA	TAA
		NO.	516	229	260	380	323	347	114	451	98	607	161	227	55
Uucumarıa mınıata ∏ ♠	NC_005929	I codon	ATG	ATG	ATG	ATG	ATG	GTG	ATG	ATG	ATG	ATG	ATG	ATG	ATG
)M (\$		T codon	TAG	TAA	TAG	$\mathrm{T}-$	TAA	TAA	TAA	T^-	TAA	TAA	TAA	TAA	TAA
		NO.	517	229	260	381	324	348	117	460	98	628	163	229	56
Fhanogema gracuus 姑如見	NC_007690	I codon	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	GTG	GTG	ATG	ATG	ATG
作りわ生		T codon	TAA	TAA	TAA	Γ_	TAA	TAA	TAA	TAA	TAG	TAA	TAA	TAA	TAA
		NO.	517	229	260	380	324	345	117	458	98	625	163	229	54
Anteaon meatterranea 坤 山 祐 祐 社 持	NC_{010692}	I codon	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	GTG	ATG	ATG	GTG
NFT (時時十四		T codon	TAG	TAA	TAA	TAA	$\mathrm{T}-$	T^{-}	TAA	TAA	TAA	TAG	TAA	TAG	TAA
		NO.	517	229	260	380	325	345	117	457	98	627	164	230	55
r torometra serratissima क्तम्र जा स्त	NC_001878	I codon	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	GTG	ATG	ATG	ATG	ATG
16/10 21 1X		T codon	TA-	TAA	TAA	TAA	- L	- L	TAG	TAA	\mathbf{TAA}	TAA	TAA	TAG	TAA
		NO.	517	228	260	380	325	346	117	460	98	627	164	228	57
IN eogymnocrinus ricneri 海方人	NC_007689	I codon	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	ATG	GTG	ATG	ATG	ATG
		T codon	TAG	TAG	TAG	T^{-}	$\mathrm{T}-$	TAA	TAA	TAG	TAG	TAA	TAA	TAG	TAA

异,氨基酸数目差异在 10 个以内的基因包括 cox2、 cox3、nad3、nad4L 和 atp6 等 5 个基因(见表 1)。

3.3 棘皮动物线粒体基因组的变异位点及分子标记 分析

从 29 种棘皮动物单基因的变异位点分析结果来 看,在 13 个蛋白质编码基因中,变异位点数最多的基 因为 nad5 基因,达到 1201 个,随后是 nad4、nad2 和 cox1 基因,分别达到 963、798 和 755 个(表 2)。因此, nad5、nad4 和 nad2 基因可以作为 cox1 基因辅助的 分子标记,用于棘皮动物物种或群体遗传的研究。在 蛇尾纲中,变异位点数最多的基因为 nad5 基因,达到 650个,随后是 nad4、nad2和 cox1 基因,分别达到 529、475和 390个(见表 3)。在海百合纲中,cox1 基 因最为保守,其次为 cox2、cox3和 cob 基因。变异位 点数最多的为 nad5基因,达到 143个,随后是 nad4 和 nad2基因,分别达到 118和 99个(见表 4)。综合 海参纲、海胆纲及海星纲的分析结果^[22-24],可以看 出,在棘皮动物现有的各个类群中,nad5、nad4和 nad2均是较为理想的分子标记基因。

表 2 棘皮动物线粒体单基因的变异位点分析

基因名称	at p6	at p8	cob	cox1	cox2	cox3	nad1	nad2	nad3	nad4	nad4L	nad5	nad6
总位点数 *	658	101	1124	1533	678	767	939	959	309	1277	271	1629	399
不变位点数	138	13	398	725	222	266	277	112	82	253	42	359	60
变异位点数	520	88	726	808	456	501	662	847	227	1024	229	1270	339
单现突变数	34	6	82	53	42	46	58	49	16	61	8	69	18
简约位点数	486	82	644	755	414	455	604	798	211	963	221	1201	321
变异位点百分比	79.03	87.13	64.59	52.71	67.26	65.32	70.50	88.32	73.46	80.19	84.50	77.96	84.96

注:*总位点数不包含插入和缺失位点,下同。

表 3 蛇尾纲线粒体单基因的变异位点分析

基因名称	at p6	at þ8	cob	cox1	cox2	cox3	nad1	nad2	nad3	nad4	nad4L	nad5	nad6	
总位点数	664	121	1134	1565	687	788	964	1016	344	1344	288	1713	447	
不变位点数	244	32	556	917	335	395	407	227	125	459	82	592	118	
变异位点数	420	89	578	648	352	393	557	789	219	885	206	1121	329	
单现突变数	167	34	242	258	152	173	214	314	81	356	88	471	154	
简约位点数	253	55	336	390	200	220	343	475	138	529	118	650	175	
变异位点百分比	63.25	73.55	50.97	41.41	51.24	49.87	57.78	77.66	63.66	65.85	71.53	65.44	73.60	

表 4 海百合纲纲线粒体单基因的变异位点分析

基因名称	at p6	at þ8	cob	cox1	cox2	cox3	nad1	nad2	nad3	nad4	nad4L	nad5	nad6
总位点数	687	163	1141	1553	687	783	970	1025	354	1373	295	1878	485
不变位点数	435	81	743	1189	482	538	624	561	214	804	172	1062	233
变异位点数	252	82	398	364	205	245	346	464	140	569	123	816	252
单现突变数	207	66	310	285	167	198	282	373	114	451	103	673	190
简约位点数	45	16	88	79	38	47	64	91	26	118	20	143	62
变异位点百分比	36.68	50.31	34.88	23.44	29.84	31.29	35.67	45.27	39.55	41.44	41.69	43.45	51.96

3.4 系统发生关系分析

当前在全球范围内,基于线粒体基因组基因排列 和蛋白质编码基因信息探讨棘皮动物内部的系统发生 关系才刚刚兴起^[3,5,7-9,14-17]。基于 29 个线粒体基因 组,对棘皮动物门进行系统、全面的进化关系分析尚未 见报道。本文基于所有棘皮动物线粒体基因组的氨基 酸序列,借助于邻接法与最大似然法所构建系统发育 树,不仅拓扑结构完全一致,而且绝大多数分支的自展 值均非常高(图 2)。从而表明,线粒体基因组应用于深入探讨棘皮动物内部的系统发生关系具有稳定、可靠的优点。从系统发生树的结果可以看出,棘皮动物下分的5个纲(蛇尾纲、海参纲、海胆纲、海星纲和海百合纲)均为单系群。线粒体基因组的数据支持棘皮动物动物在纲层次的亲缘关系为:(((海胆纲+海星纲)+海参纲)+蛇尾纲)+海百合纲,海百合纲作为棘皮动物中最为古老的类群,位于系统发生树的根部。

29 个棘皮动物分属于 20 个科,基于线粒体基因 组构建的系统发生树,支持所有的 20 个科均为单系 群;同时,在目的层次上,共有 12 个目,除了真蛇尾目 外,其余 11 个目均为单系群。真蛇尾目的 5 个物种 (小双鳞蛇尾、尖棘紫蛇尾、黑仿栉蛇尾、白色真蛇尾 和灰色真蛇尾)分属于4个科。其中阳遂足科、辐蛇 尾科和栉蛇尾科聚为一支,白色真蛇尾和灰色真蛇尾 组成的真蛇尾科却与蔓蛇尾目筐蛇尾科的海盘聚为 一支(BPN=100,BPM=91)(图2)。从主编码基因的 基因排列情况来看,阳遂足科、辐蛇尾科和栉蛇尾科 物种线粒体基因组主编码基因的基因排列完全相同, 而真蛇尾科的白色真蛇尾和灰色真蛇尾,与同目的前 3个科相比,存在3个蛋白质编码基因(nad1、nad2和 cob)的倒位(见图1)。综合系统发生树及主编码基因 的基因排列分析结果,均支持真蛇尾目并非单系发生 (图1,图2)。

图 2 基于邻接法与最大似然法构建的系统发生树 第一、第二位数值分别表示邻接法和最大似然法的自展值(Bootstrap=100)

4 讨论

线粒体基因组主编码基因的分析结果显示,在蛇 尾纲和海百合纲内部,基因排列顺序并不保守;海胆 纲和海参纲物种主编码基因的基因排列完全一致,海 星纲物种线粒体基因组与此相比,存在一个长片段的 倒位。蛇尾纲真蛇尾目的3个科(阳遂足科、辐蛇尾 科和栉蛇尾科)主编码基因的基因排列完全相同,而 同属于真蛇尾目,另外一个科(真蛇尾科)的白色真蛇 尾和灰色真蛇尾,与同目的前3个科相比,存在3个 蛋白质编码基因(nad1、nad2和 cob)的倒位。蛇尾纲 蔓蛇尾目的海盘,与真蛇尾目5个线粒体基因组相

比,存在主编码基因的重排。海百合纲的栉羽星和花 形羽枝主编码基因的基因排列完全相同,地中海海羊 齿和海百合与此相比,分别存在一个蛋白质编码基因 (nad4L)的易位。在13个蛋白质编码基因中,有7个 基因(cox1-3,cob,nad3,nad4 和 nad6)使用"ATN" 作为起始密码子;其余 6 个基因存在"ATN"之外的起 始密码子。6个基因(cox3、nad3、nad4L、nad6、atp6 和 atp8)在所有棘皮动物中,均使用完全终止密码子 ("TAA"或"TAG");除此之外,其余7个基因,在部 分物种中存在不完全终止密码子("TA-"或"T-") 的现象。虽然在近缘类群之间,同一蛋白质编码基因 所编码的氨基酸数目较为保守,然而,在棘皮动物门 的层次上,所有13个蛋白质编码基因的氨基酸数目 均存在一定差异。综合分析 29 种棘皮动物线粒体基 因组,计算棘皮动物门内单基因的变异位点;并且基 于蛇尾纲和海百合纲线粒体基因组数据,计算两个纲 内部的单基因变异位点。结合海星纲、海胆纲和海参

纲的基因变异位点分析结果表明,在棘皮动物群体溃 传和生物地理的研究中, nad5、nad4 和 nad2 均是较 为理想的分子标记基因,为棘皮动物内部各类群生物 资源的保护及合理利用提供珍贵的基础资料。基于 29个线粒体基因组的氨基酸序列,通过两种方法(邻 接法和最大似然法)所构建系统发生树的拓扑结构完 全一致。棘皮动物下分的5个纲(蛇尾纲、海参纲、海 胆纲、海星纲和海百合纲)均为单系群。线粒体基因 组的数据支持棘皮动物动物在纲层次的亲缘关系为: (((海胆纲+海星纲)+海参纲)+蛇尾纲)+海百合 纲,海百合纲作为棘皮动物中最为古老的类群,位于 系统发生树的根部。线粒体基因组构建的系统发生 树,支持所有的科均为单系群,然而,综合蛋白质编码 基因的系统发生树及主编码基因的基因排列分析结 果,均支持真蛇尾目并非单系发生,真蛇尾目的有效 性还值得今后深入研究。

参考文献:

- [1] Brusca R C, Brusca G J. Invertebrates [M]. Sunderland, MA: Sinauer Associates, 2003.
- [2] 廖玉麟,肖宁. 中国海棘皮动物的种类组成及区系特点[J]. 生物多样性,2011,19(6): 729-736.
- [3] Matsubara M, Komatsu M, Araki T, et al. The phylogenetic status of Paxillosida (Asteroidea) based on complete mitochondrial DNA sequences[J].
 Mol Phylogenet Evol, 2005, 36 (3): 598-605.
- [4] Smith M J, Banfield D K, Doteval K, et al. Nucleotide sequence of nine protein-coding genes and 22 tRNAs in the mitochondrial DNA of the sea star *Pisaster ochraceus*[J]. J Mol Evol, 1990, 31 (3): 195–204.
- [5] Yasuda N, Hamaguchi M, Sasaki M, et al. Complete mitochondrial genome sequences for Crown-of-thorns starfish Acanthaster planci and Acanthaster brevispinus[J]. BMC Genomics, 2006, 7 (1): 17–26.
- [6] Asakawa S, Himeno H, Miura K, et al. Nucleotide sequence and gene organization of the starfish Asterina pectini fera mitochondrial genome[J]. Genetics, 1995, 140 (3): 1047-1060.
- [7] Perseke M, Bernhard D, Fritzsch G, et al. Mitochondrial genome evolution in Ophiuroidea, Echinoidea, and Holothuroidea: insights in phylogenetic relationships of Echinodermata[J]. Mol Phylogenet Evol, 2010, 56 (1): 201-211.
- [8] Perseke M, Fritzsch G, Ramsch K, et al. Evolution of mitochondrial gene orders in echinoderms[J]. Mol Phylogenet Evol, 2008, 47 (2): 855-864.
- [9] Scouras A, Beckenbach K, Arndt A, et al. Complete mitochondrial genome DNA sequence for two ophiuroids and a holothuroid: the utility of protein gene sequence and gene maps in the analyses of deep deuterostome phylogeny[J]. Mol Phylogenet Evol, 2004, 31 (1): 50-65.
- [10] Smith M J, Arndt A, Gorski S, et al. The phylogeny of echinoderm classes based on mitochondrial gene arrangements [J]. J Mol Evol, 1993, 36 (6): 545-554.
- [11] De-Giorgi C, Martiradonna A, Lanave C, et al. Complete sequence of the mitochondrial DNA in the sea urchin *Arbacia lixula*: conserved features of the echinoid mitochondrial genome[J]. Mol Phylogenet Evol, 1996, 5 (2): 323-332.
- [12] Cantatore P, Roberti M, Rainaldi G, et al. The complete nucleotide sequence, gene organization, and genetic code of the mitochondrial genome of Paracentrotus lividus[J]. J Biol Chem, 1989, 264 (19): 10965-10975.
- [13] Valverde J R, Marco R, Garesse R. A conserved heptamer motif for ribosomal RNA transcription termination in animal mitochondria[J]. PNAS, 1994,91 (12): 5368-5371.
- [14] Sun X, Li Q, Kong L. Comparative mitochondrial genomics within sea cucumber (*Apostichopus japonicus*): Provide new insights into relationships among color variants[J]. Aquaculture, 2010, 309 (1/4): 280–285.
- [15] Shen X, Tian M, Liu Z, et al. Complete mitochondrial genome of the sea cucumber *Apostichopus japonicus* (Echinodermata: Holothuroidea): the first representative from the subclass Aspidochirotacea with the echinoderm ground pattern[J]. Gene, 2009, 439 (1-2): 79-86.
- [16] Fan S, Hu C, Wen J, et al. Characterization of mitochondrial genome of sea cucumber Stichopus horrens: a novel gene arrangement in Holothu-

roidea[J]. Sci China, 2011, 54 (5): 434-441.

- [17] Scouras A, Smith M J. The complete mitochondrial genomes of the sea lily *Gymnocrinus richeri* and the feather star *Phanogenia gracilis*: signature nucleotide bias and unique nad4L gene rearrangement within crinoids[J]. Mol Phylogenet Evol, 2006, 39 (2): 323-334.
- [18] Larkin M A, Blackshields G, Brown N P, et al. Clustal W and Clustal X version 2.0[J]. Bioinformatics, 2007, 23 (21): 2947-2948.
- [19] Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data[J]. Bioinformatics, 2009, 25 (11): 1451-1452.
- [20] Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Mol Biol Evol, 2011, 28 (10): 2731-2739.
- [21] Guindon S, Dufayard J F, Lefort V, et al. New algorithms and methods to estimate maximum—likelihood phylogenies: assessing the performance of PhyML 3.0[J]. Syst Biol, 2010, 59 (3): 307—321.
- [22] 申欣,田美,程汉良,等. 海参纲线粒体基因组特征分析及分子标记探讨[J]. 水产科学,2011,30 (7):400-404.
- [23] 田美,申欣,孟学平,等. 海胆纲线粒体基因组特征及基因差异位点分析[J]. 水产科学,2011,30 (3): 174-176.
- [24] 田美,申欣,孟学平,等.7个海星动物线粒体基因组比较及基因变异位点分析[J].台湾海峡,2012,31(2):189-194.

Gene rearrangement, molecular markers and phylogenetic analyses of echinoderms mitochondrial genomes

SHEN Xin^{1,2}, TIAN Mei¹, MENG Xueping¹, CHENG Hanliang¹, YAN Binlun¹

(1. College of Marine Science Jiangsu Key Laboratory of Marine Biotechnology, Huaihai Institute of Technology, Lianyungang 222005, China; 2. Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China)

Abstract, Echinoderms are important group of invertebrates, which only found in marine habitats. Twenty-nine echinoderms mitochondrial genomes were fully analyzed in this article. The major coding gene arrangements of sea urchins and sea cucumbers are identical. The major coding gene arrangements within starfishes are also identical, and there is a long fragment inversion compared with these of sea urchins and sea cucumbers. The major coding gene arrangements of *Phanogenia gracilis* and *Florometra serratissima* (Crinoidea) are identical, compared with which there are a protein-coding genes (nad4L) translocation in Antedon mediterranea and Neogymnocrinus richeri mitochondrial genomes, respectively. The major coding gene arrangements of three families Amphiuridae, Ophiactidae and Ophiocomidae (Ophiuroidea: Ophiurida) are identical. However, there are three protein-coding genes (nad1, nad2 and cob) inversions in the mitochondrial genomes of Ophiura albida and Ophiura lutkeni, which belong to another family in the same order Ophiurida, Compared with five mitochondrial genomes from Ophiurida, there are major coding gene rearrangements in Astros partus mediterraneus (Ophiuroidea: Euryalida) mitochondrial genome. The genetic variation analyses of main genes (13 protein coding genes) within 29 echinoderms mitochondrial genomes shown that nad5, nad4 and nad2 gene are ideal molecular markers. Tree topologies based on amino acid sequences of the protein-coding genes in 29 echinoderms mitochondrial genomes by two methods (neighborjoining and maximum likelihood method) are identical. Phylogenetic trees based on mitochondrial genome data support that five classes (Ophiuroidea, Holothuroidea, Echinoidea, Asteroidea and Crinoidea) are monophyletic groups, and the relationship within them are (((Echinoidea + Asteroidea) + Holothuroidea) + Ophiuroidea) + Crinoidea. The class Crinoidea is the most ancient group in echinoderms, which located in the root of phylogenetic trees. Phylogenetic results support all families are monophyletic groups. Comprehensive analyses of phylogenetic trees based on the protein coding genes and major genes rearrangements support that Ophiurida is not monophyletic. The validity of the family Ophiurida is also worth further studies.

Key words: mitochondrial genome; protein-coding gene; gene rearrangement; molecular marker; phylogeny; echinoderms