第45卷 第9期	海	洋	学	报	Vol. 45 No. 9
2023 年 9 月]	Haiyang	, Xueba	0	September 2023

任泓好,刘甜甜,竹攸汀,等.厚壳贻贝(*Mytilus coruscus*)*McNF-κB*基因的克隆及其在发育中的作用[J].海洋学报,2023,45(9):141–151, doi:10.12284/hyxb2023114

Ren Hongyu, Liu Tiantian, Zhu Youting, et al. Cloning of the *McNF-κB* gene of *Mytilus coruscus* and its role in development[J]. Haiyang Xuebao, 2023, 45(9): 141–151, doi:10.12284/hyxb2023114

厚壳贻贝(*Mytilus coruscus*)*McNF-κB*基因的克隆 及其在发育中的作用

任泓好^{1,2}, 刘甜甜^{1,2}, 竹攸汀^{1,2}, 杨金龙^{1,2}, 梁箫^{1,2*}

(1.上海海洋大学上海市水产动物良种创制与绿色养殖协同创新中心,上海 201306; 2.上海海洋大学国家海洋生物科学国际联合研究中心,上海 201306)

摘要:核因子κB(Nuclear Factor kappa-B, NF-κB)具有免疫、炎症、凋亡、细胞增殖和发育的调节作用, 目前 NF-κB 在脊椎动物和果蝇中的研究较为丰富,在贝类中的报道较少。为进一步探究 NF-κB 在厚 壳贻贝(Mytilus coruscus)免疫和发育中的作用,本研究克隆了厚壳贻贝 McNF-κB 基因的序列全长, 其全长为4087 bp,开放阅读框为2613 bp,编码871个氨基酸,具有典型的锚蛋白重复序列(ankyrinrepeat, ANK)结构域和死亡结构域。氨基酸序列分析结果发现,该基因与欧洲贻贝(Mytilus edulis) 和地中海贻贝(Mytilus galloprovincialis)分别具有72.76%和66.58%同源性,且在系统进化树中与欧 洲贻贝和地中海贻贝聚为一支。经实时荧光定量 PCR(qRT-PCR)技术检验表明,McNF-κB 基因于 厚壳贻贝各组织均有分布,在鳃中表达最高;McNF-κB 基因在厚壳贻贝眼点幼虫阶段和稚贝阶段均有 表达,且在稚贝阶段表达量显著高于眼点幼虫阶段。利用 RNA 干扰技术沉默眼点幼虫 McNF-κB 基因 后幼虫变态率显著下降,推测 McNF-κB 基因调控厚壳贻贝幼虫变态过程。本研究为探究 McNF-κB 基因

关键词:厚壳贻贝;NF-κB;基因克隆;幼虫变态 中图分类号:Q789;P714⁺.5 **文献标志码:**A

1 引言

厚壳贻贝(Mytilus coruscus)是我国沿海常见的双 壳类生物,也是我国重要的海水养殖物种,具有营养 丰富、肉味鲜美等特点^[1-2]。而如今,野生厚壳贻贝生 物量大量减少以及商业环境下的供不应求导致养殖 产业面临苗种量稀缺问题^[3],所以苗种数量是亟待解 决的一个问题。厚壳贻贝生长过程包括营浮游生活 的幼虫阶段和底栖生活的成贝阶段,而幼虫向成贝转 变的附着变态过程是其生长发育的重要环节^[4],因此 文章编号: 0253-4193(2023)09-0141-11

探究附着变态机制对提升厚壳贻贝幼苗存活率及其 野生生物量的恢复具有重要的价值。以往的研究发 现 Toll 样受体(Toll-Like Receptor, TLR)通路的 TLR^[5], Wnt 信号通路的 Wnt4 和 Wnt7b 基因^[6-7] 及一氧化氮信 号通路的一氧化氮合酶(NOS)基因^[8]都可能参与了 厚壳贻贝的幼虫变态过程,其中核因子 κB(Nuclear Factor kappa-B, NF-κB)不仅作为 Toll 样受体通路的入 核因子^[9],还同 Wnt 信号通路交叉调控均可激活 NOS 基因的表达^[10], NF-κB 转录因子介导厚壳贻贝幼 虫变态的内部分子机制尚不清楚。

收稿日期: 2023-01-29;修订日期: 2023-04-20。

基金项目:上海市学术带头人项目(20XD1421800);国家自然科学基金(41876159)。

作者简介:任泓好(1999—),女,河南省焦作市人,研究方向为海洋贝类分子生物学。E-mail:m200100028@st.shou.edu.cn

*通信作者:梁箫(1983—),女,博士,副教授,主要从事海洋微生物与海洋贝类互作关系研究。E-mail: x-liang@shou.edu.en

NF-κB 是 NF-κB 信号通路的核心,控制着免疫、 炎症、凋亡和细胞增殖等重要调控基因的表达^[11]。 NF-κB 最初被鉴定为 B 细胞特异性转录因子,其结合 免疫球蛋白(Ig)中的 κB 位点^[12]。随后在所有细胞类 型中都发现了 NF-κB 的存在。当细胞接收到信号时, NF-κB 从抑制蛋白 κB(IkB)释放出来,然后迅速进入 细胞核,激活各种下游基因的表达^[13]。1986年, NFκB 蛋白首次在小鼠(*Mus musculus*)^[14]中发现,在哺乳 动物中, NF-κB 家族由 5 种蛋白组成: RelA(p65)、 RelB、c-Rel、NF-κB1(p105/p50)和 NF-κB2(p100/p52), 存在着主要的两条信号通路: Toll 样受体通路和肿瘤 坏死因子(Tumor Necrosis Factor, TNF)受体通路^[15]。

在果蝇(Drosophila)中,发现有3种NF-κB家族 蛋白:Dorsal、Dif和Relish^[16],也存在两种信号通路: Toll通路和免疫缺陷(Immune Deficiency, IMD)通路^[17]。 果蝇的NF-κB家族蛋白除了具有与哺乳动物相似的 抗细菌和抗真菌的免疫效应,果蝇的Dorsal蛋白还决 定胚胎背腹轴的形成^[18],与生长发育有关。除此之外, NF-κB在其他无脊椎动物的研究中也取得一定进 展^[19-28]。在贝类的研究中,已在太平洋牡蛎(Crassostrea gigas)^[29]、九孔鲍(Haliotis diversicolor supertexta)^[30]、 盘鲍(Haliotis discus discus)^[31]、光滑双脐螺(Biomphalaria glabrata)^[32]和栉孔扇贝(Chlamys farreri)^[33]等物种中 克隆得到NF-κB基因,但该基因在这些贝类发育中的 功能仍不得知。

本研究克隆了 NF-κB 基因全长,验证了其在各组 织的分布情况以及在幼虫变态前后的表达情况,利 用 RNA 干扰技术验证该基因在幼虫变态过程中的功 能。本研究探究了 NF-κB 基因在厚壳贻贝发育中的 作用,为研究厚壳贻贝变态的分子作用机制奠定基 础,为养殖产业提供更多的理论依据。

2 材料与方法

2.1 实验材料

厚壳贻贝成贝取自中国浙江省嵊泗列岛东部的 枸杞岛(30°46′N,122°44′E),成贝到达实验室后需在 水温为21℃且盐度为30的海水中暂养1周。暂养后 解剖成贝取得唇瓣、血淋巴、外套膜、闭壳肌、鳃、消 化腺、足、肠和性腺的组织样品,液氮速冻后存于 -80℃,用于总RNA提取。

利用 Yang 等^[34] 的厚壳贻贝人工受精方式培养得 到实验所用眼点幼虫(壳长:(235±55)µm,壳高: (216±55)µm, N=50)。避光培养于水温 18℃ 的海水 中,密度为 5 只/mL,培养的幼虫用于后续实验。

2.2 总 RNA 提取和 cDNA 合成

将所收集的样品进行 RNA 的提取,实验方法参考 RNAiso Plus 试剂(TaKaRa,日本)手册。RNA 浓度用 Nanodrop 2000 超微量分光光度计(Thermo Scientific,美国)检测, RNA 质量用 1% 琼脂糖凝胶电泳检测。RACE cDNA 第一条链遵循 SMARTer™ RACE 5'/3' Kit 试剂盒(Clontech,日本)合成。

2.3 *NF*-*κB* 基因 cDNA 全长克隆

通过厚壳贻贝转录组文库得到 NF-кB 基因转录 组 DNA 序列,遵循 SMARTer™ RACE 5'/3' Kit 试剂 盒(Clontech, 日本),设计操作指南中规定的 RACE 反 应特异性引物(表 1),进行 RACE 扩增。扩增后的产 物回收、连接及转化,于生工生物工程(上海)有限公 司对阳性克隆菌株测序,拼接后得到 NF-кB 基因 全长。

表 1 厚壳贻贝 *NF-κB* 基因 cDNA 全长克隆和 mRNA 表达分 析所用的引物序列

Table 1Primers sequences used for full-length cDNA cloningand Mytilus coruscus NF-kB gene mRNA expression analysis

引物名称	序列	用途
<i>McNF-кB</i> -1-3' RACE	TGACAGAAAAGGCAATACCCCG	3' RACE
<i>McNF-кB</i> -2-3' RACE	GAGGTGACCCTGAGATGGAA	3' RACE
<i>McNF-кB</i> -1-5′ RACE	GAGGTTGGCAAAAGTGACAG	5' RACE
<i>McNF-кB</i> -2-5' RACE	CTTCAGAACATTTGCCCCC	5' RACE
<i>McNF-кB</i> -RT-F	GTATACCCAGACCCCAATC	qRT-PCR
<i>McNF-кB</i> -RT-R	TCTTCTACCGTCACCACC	qRT-PCR
<i>EF-1α</i> -RT-F	CACCACGAGTCTCTCCCTGA	qRT-PCR
<i>EF-1α</i> -RT-R	GCTGTCACCACAGACCA TTCC	qRT-PCR

2.4 序列分析

开放阅读框(Opean Reading Frame, ORF)的查询 和预测蛋白的分子量、等电点分别借助 ORF Finder (https://www.ncbi.nlm.nih.gov/orffinder/)和 ExPASys (https://web.expasy.org/protparam/);预测蛋白结构域使 用 SMART(http://smart.embl-heidelberg.de/);氨基酸序 列 多重比对使用 Clustal Omega(https://www.ebi.ac. uk/Tools/msa/clustalo/)和 DNAman 软件共同完成;利 用 MEGA X 软件采用邻接法(Neighbor-Joining, NJ)基 于 Kimura 双参数(Kimura 2-parameter, K2)模型,自举 检验(Bootstrap test)检测 1 000 次,构建系统进化树^[35-36]。

2.5 qRT-PCR 分析

根据所克隆的 NF-κB 基因及作为内参基因的 EF-

 $I\alpha$ 序列,分别设计 qRT-PCR 引物(表 1)。参照说明 书使用 Fast Start Essential DNA Green Master 试剂盒 (Roche, 瑞士)对 *NF-кB* 基因在厚壳贻贝各组织及幼 虫变态前后阶段的表达情况进行 qRT-PCR 检测^[37]。 各个组织收集 5 个生物学重复,幼虫变态前后阶段收 集 4 个生物学重复,每个样品两次技术重复。将 *NF-кB* 基因在不同样品中的相对丰度通过 JMP 10.0 软件 进行单因素方差分析判断其差异性, p < 0.05 表示差 异性显著。

2.6 眼点幼虫 RNA 干扰后的变态诱导实验

实验所用的 siRNA(Short interfering RNA)由吉玛 公司(GenePharma,上海)设计合成。利用电穿孔法^[38-39] 将 siRNA 转染入眼点幼虫,将幼虫置于只含有高压灭 菌过滤海水(AFSW)含有 0.4 μ g/mL *NF-кB* siRNA(*NFκB* siRNA 序列: 5'-GCGCCAUCUACUCUCAAUATT-3')及含有 0.4 μ g/mL 非目的基因 siRNA 的无酶 Tube 管中孵育 5 min,每组 100~200 只幼虫,随后将幼虫 和 siRNA 混合物转移至 GenePulser Xcell 电穿孔仪 (Bio-Rad,美国)配套的电击杯(Bio-Rad,美国)中进行 电击,电击后的幼虫于 AFSW 中静置 24 h 后进行变 态诱导实验。

使用肾上腺素(Epinephrine, EPI)诱导幼虫变态^[39]。 本实验共设 5 个组别: AFSW 对照组、EPI诱导对照 组(非电击)、仅电击后 EPI诱导组、NC siRNA 转染 后 EPI诱导组、*McNF-кB* siRNA 转染后 EPI诱导组。 除 AFSW 对照组,其他实验组使用 10⁻⁴ mol/mL 的 EPI分别暴露刺激电击结束静置 24 h 后的幼虫,各组 均设置 9 个平行,每个平行均将 20 只幼虫置于含有 20 mL AFSW 的灭菌玻璃皿中,各组均统计连续暴露 24 h、48 h、72 h 和 96 h 后的变态数量,并且记录 14 h 内的存活数量。

3 结果与分析

3.1 厚壳贻贝 *McNF-κB* 基因 cDNA 全长的克隆及序 列特征分析

利用 RACE 克隆技术获得 *McNF-кB* 基因全长(Gen-Bank 登录号: OM930729)。该基因全长为 4 087 bp, 5'非 编码区为 897 bp, 3'非编码区为 574 bp, ORF 为 2 613 bp, 编码 871 个氨基酸。预测 *McNF-кB* 基因的编码蛋白 分子量为 63.303 KD,等电点为 5.71(图 1)。SMART 预 测 McNF-кB 的结构域,结果显示,第 439~468 位氨 基酸、第 479~508 位氨基酸、第 512~542 位氨基酸、 第 555~584 位氨基酸、第 589~619 位氨基酸、第 623~ 652 位氨基酸为 ANK 结构域,第 750~837 位氨基酸 为死亡结构域(图 2)。ANK 结构域和死亡结构域是 NF-κB 家族蛋白 calss I 类型 C 端结构的特征^[40]。

3.2 厚壳贻贝与其他物种 NF-κB 氨基酸序列多重比 对及系统进化分析

将厚壳贻贝 McNF-κB 基因的氨基酸序列与欧洲 贻贝(M. edulis)、地中海贻贝(M. galloprovincialis)、 黑腹果蝇(D. melanogaster)和人(Homo sapiens)的氨基 酸序列进行比对,一致性分别为72.76%、66.58%、14.41% 和 18.85%。厚壳贻贝 McNF-κB 与以上几个物种进行 氨基酸多序列比对后发现其具有相似的特征, McNFκB 基因具有多个保守的 ANK 结构域和死亡结构域, 其中 ANK 结构域和死亡结构域与欧洲贻贝的相似度 分别为 100% 和 97.73%, ANK 结构域与地中海贻贝的 相似度为 99.07%(图 3)。系统进化树结果显示, 厚壳 贻贝首先与欧洲贻贝和地中海贻贝聚为一支, 再依次 与虾夷扇贝(C. farreri)、三角帆蚌(Hyriopsis cumingii)、 砂海螂(Mya arenaria)等聚为一支(图 4), 表明 McNFκB 基因符合传统进化关系。

3.3 McNF-κB基因在厚壳贻贝各组织的表达分析

成贝各组织中的 *McNF-κB* 基因表达结果显示, *McNF-κB* 基因在各组织中均有表达(图 5)。其中, *McNF-κB* 基因在鳃的表达量显著最高(*p* < 0.05),在 外套膜和唇瓣的表达量其次,然后依次为足、肠、闭 壳肌、消化腺、血淋巴和性腺。表达量最高的鳃中该 基因的表达水平为表达量最低的性腺中的 8.73 倍。

3.4 McNF-κB基因在厚壳贻贝幼虫变态前后阶段的 表达分析

*McNF-κB*基因在厚壳贻贝幼虫变态过程的定量 表达结果显示, *McNF-κB*基因在厚壳贻贝眼点幼虫和 稚贝中均有表达, 且稚贝阶段表达量显著高于眼点幼 虫阶段, 升高了 1.86 倍(*p* < 0.05)(图 6)。

3.5 McNF-кB 基因干扰后对幼虫变态率的影响

实验结果显示,在暴露刺激 72 h 后, EPI 诱导对 照组的变态率为 51.1%。仅电击后 EPI 诱导组的变态 率为 38.3%,与 EPI 诱导组相比明显下降(p < 0.05)。 NC siRNA 转染后 EPI 诱导组和 *McNF-кB* siRNA 转染 后 EPI 诱导组的幼虫变态率分别是 27.8% 和 6.7%,相 比仅电击后 EPI 诱导组明显下降(p < 0.05),而 *McNFкB* siRNA 转染后 EPI 诱导组的幼虫变态率显著低于 NC siRNA 转染后 EPI 诱导组的幼虫变态率显著低于 NC siRNA 转染后 EPI 诱导组(p < 0.05),下降了 76%(图 7A)。在连续暴露刺激 14 d 后幼虫存活率结 果显示, *McNF-кB* siRNA 和 NC siRNA 转染后与空白 对照组相比无显著差异(p > 0.05)(图 7B)。

	aatgttttcaagagagttttgatgaaaattggtacaagatgagtgatgctgatacaggct	2 221
101	cagatgacagcaaggacagtaatactgttggggttccacaattccttgttgttaacaatg	2 221
121	tacacatgttaaatggagatcaccaccatgttaatatgtatg	2 201
181	aggccaaaccctatatagagatagtagaacaaccacagtctagaggatttcgttttagat	2 281
241	atgagtgtgaagggccatcacatggtggtcttcagggagagaaagtgaaagtgtaaagtatcgta	2 241
261	aaacatteeccagetateaaaataagaaactacaatggteecaagtegtgtagtggttaact	2 541
421	tggtaacagatgaagcagtteetagaccacatgeteataattggttggaaagaactgea	2 401
421	grgargg igtarg tacag taga igt caaaactgga caaaa tac igt cactitig ccaaac	2 401
401 541		2 461
541	aatetatgaagatggataaaatggteaaattaggaaaceteaatgaacaageatatttat	2 401
601	cagaggatgaattggcacaagcaaacagcaagcaggaagcaagc	2 521
661	tgaacgttgtgaaactttgttttcaagcctacctgaaagacggcagtgggttaattagta	2 521
721	aagtettaccatcagttttatettcaccaatetatgatagcaaggcaccgggggcaaatg	2 501
/81	ttctgaagatctgtagaatggataaatatggaggatcttgtaaaggggatgaagaagttt	2 581
841	tccttctgtgtgaaaaagtacagaaagatgacataagtgtaagatttgtggaacaag <u>ATG</u>	2.44
	M	2 641
901	AAGATGGAAATGTTGTATGGGAGGCGTTTGGTAATTTTGGTCCCTTTTGATGTCCATAGA	
	KMEMLYGRRLVILVPFDVHR	2 701
961	CAGTATGCCATAGTGTTTAAGACTCCTGCTTATAAGGATCCCACAATTGATCGGACAGTG	
	Q Y A I V F K T P A Y K D P T I D R T V	2 761
1 021	AATGTGTTTATTATGTTACAAAGAAAGTCAGATGGAGAGACAAGTGATCCCAAGTCATTT	
	N V F I M L Q R K S D G E T S D P K S F	2 821
1 081	ACATACTATCCCCAGAAAGATGAAATAGATGAGTTACTCAAGCATAAAAGAAGTAAGAAG	
	TYYPQKDEIDELLKHKRSKK	2 881
1 141	ATGCCAAGTTATCCTGGCCCAGGGAACTTTGGTGGACCAGGAGGGAACAACTCAAGTAGA	
	M P S Y P G P G N F G G P G G N N S S R	2 941
1 201	AATAACATCAATATTTCTGGAATCCAAGCAAACAATCCATTCAGCCAAACGAGTCAAGGA	
	N N I N I S G I Q A N N P F S Q T S Q G	3 001
1 261	GGTAACCTCCCGATCACCGTGAACCAAGATACTATGGATACTACTCCTATATCGAATGCA	
	G N L P I T V N Q D T M D T T P I S N A	3 061
1 321	CAACAGCAGCAACAGCTGCAACAGGCAATTAGAATGACAGCAGCTCCAGGACGTCGTGCT	
	Q Q Q Q Q L Q Q A I R M T A A P G R R A	3 121
1 381	CGACCAAGACAAACTGCTAGCGCTAATGATTTAACCACAGATGGTGAAAGCCAATTGCCT	
	R P R Q T A S A N D L T T D G E S Q L P	3 181
1 441	ACTCTCTTTTCCCAAGATATCTTCATGCAACCCCAAGGCCCACCAATGATGATGCCACAA	
	T L F S Q D I F M Q P Q G P P M M M P Q	3 241
1 501	CAAGATATGAAACAAACTGTATACCCAGACCCCAATCTAATGTATTTCCAGCAGTTTGCA	
	Q D M K Q T V Y P D P N L M Y F Q Q F A	3 301
1 561	GTTGGTAATCAACACATACCATTTCAACAGCTGCAACCCCGTGGATCACCCCGTGGGTCA	
	V G N Q H I P F Q Q L Q P R G S P R G S	3 361
1 621	CAACTTACTCCTCGAGGCACTGTCATAAGACAAACCCCTAGTCACAATTTTGGTGGTGAC	
	Q L T P R G T V I R Q T P S H N F G G D	3 421
1 681	GGTAGAAGAGGCTATGACGAAACAGACAGTGTTCCATCGAAGCAAATGGGGGGGAGTGTGC	
	G R R G Y D E T D S V P S K Q M G G V C	3 481
1 741	TTTCCCCCTGTAGAACCGTATGGTCATCCAGGATTTTTCAAATCAGCATCTGATTCAGTA	
	F P P V E P Y G H P G F F K S A S D S V	3 541
1 801	TTATCAGAGAAAATAATGGATAACGGAATGAAGGACTTGAACGAATTGCTCCGTTCGAAT	3 601
	LSEKIMDNGMKDLNELLRSN	3 661
1 861	GTCAGATGCCTCCTAGATGAAAAAATTGAGGACAATGAGGATGAAATGAAAGAGGAAGAA	3 721
	V R C L L D E K I E D N E D E M K E E E	3 781
1 921	AAATGTTTGAAAAACTGTACAAGAGGACGTACTAGAAAAATAAAGTTGACAATATGGAAGAT	3 841
	K C L K T V Q E D V L E N K V D N M E D	3 901
1 981	TCTGAGATGACTTCAGATGATCAAAAATAAACAAAATTTGGATATTAAAGACAAAAGTGAA	3 961
	SEMTSDDQNKQNLDIKDKSE	4 021
2 041	CATGAAATATCTGTCAAATCTCAATCACAGGATTTTAGTGCACAAACAGAGAGTGATGAT	4 081
	H E I S V K S Q S Q D F S A Q T E S D D	
2 101	GTTATGCACATTGTTGATAGAACTTCAAAGGCATTACAGTTTTATGCTGCTACAGGAAAC	
	V M H I V D R T S K A L Q F Y A A T G N	
2 161	ATAAAGCAGTTGTTATTTGTTCAGCGCCATCTACTCTCAATATCAGATGATAGTGGCGAT	

	Ι	К	Q	L	L	F	V	Q	R	Н	L	L	S	Ι	S	D	D	S	G	D
221	CTA	CCT	CTA	CAC	ACA(GCC	ATC	ATA.	AAT.	AATO	CAG	ΓTΑ	GAA	GTC	ATA	CAT	AAT	CTC	CTA(GAC
	L	Р	L	Н	Т	А	Ι	Ι	Ν	Ν	Q	L	E	V	Ι	Н	Ν	L	L	D
281	GTC	ATG	TCT.	ACA	TTA(CCA	LUC.	TGT.	AGA	TAC	AAA	ICT.	AGTO	GCT	FAC.	AAT	AGT	CTA	AGA	CAG
	V	М	S	Т	L	Р	Y	С	R	Y	К	S	S	А	Y	Ν	S	L	R	Q
341	ACG	cco	CTT	CAT	TTA(GCG	GTA	CTG.	ATG	GGA	CAG	CCA	AGT	GTA(GTT	GAC	AGG	TTG	TTA	AAT
	Т	Р	L	Н	L	A	V	L	M	G	Q	Р	S	V	V	D	R	L	L	Ν
401	GTA	GGA	GCT	GAT	CCA	ACC.	ATG	GTT	GAC.	AGA	AAA	GGC.	AATA	ACCO	CCG	GCA	CAT	CTT	GCC	ATA
	V	G	А	D	Р	Т	М	V	D	R	K	G	Ν	Т	Р	А	Н	L	А	Ι
461	TTG	TAC	GGG	GCA	GAT	ICA'	FGT	CTT	GCC.	ATT	CTA	GTC	AGA	FAC	CAA	AGA	IGT.	AAT	GCA	GCC
	L	Y	G	А	D	S	С	L	А	Ι	L	V	R	Y	Q	R	С	Ν	А	Α
521	AAA	AAT	AAA	CCA	TTC	CCA	GAG	CTA	GAT	CTC	AAG.	AAC	TTT(GAT	GGC	TTT	ICT.	ACT	GCC	CAT
	Κ	Ν	К	Р	F	Р	Е	L	D	L	К	Ν	F	D	G	F	S	Т	A	Η
581	CTT	GCA	GCT.	ATA	ACA	CAG	AAT	TGT.	AAT	GCT	ATG.	AAA	CTG	ATA	ГСA	AAA	GGA.	AAA	GGG	AAT
	L	А	А	Ι	Т	Q	N	С	Ν	А	M	K	L	Ι	S	K	G	Κ	G	Ν
2 641	ATA	AAC	ATG	CCC	GAT	GGT	AAG.	AGT	GGA	AGA	ACC	CCO	CTA	CAT	CAT	GCT	GTA	GAG	AGA	GAT
	Ι	Ν	М	Р	D	G	К	S	G	R	Т	Р	L	Н	Н	А	V	E	R	D
701	GAT	CTA	ACT.	ACT	GTT	GGA	FAT	CTA	ATA	TTA	GAG	GCT	AGG	GCA	AAT	GTA	AAT	GCA'	TGT	ГGТ
	D	L	Т	Т	V	G	Y	L	Ι	L	E	А	R	А	N	V	N	А	С	С
2 761	TTT	GAT	GGT.	AAT/	ACA	CCT	CTG	CAT	GTT	GCC	FGT	GCA.	AGAG	CAG	AAT	GTT	GGT.	ATT	GTG	GCA
	F	D	G	N	Т	Р	L	H	V	A	С	A	R	Q	N	V	G	Ι	V	A
2 821	TTA	TTG	ATA	GCT	GCC	GGA	GGT	GAC	CCT	GAG	ATG	GAA.	AAT	GAT	GAA	GTT.	AAG	GAA	GAA	CTG
	L	L	Ι	A	A	G	G	D	Р	E	M	E	N	D	E	V	K	E	E	L
2 881	TAT	GAT	GAA	TTT	GAG	GGA	GTT(CAA	GAT	GAC	AAA(CAA	CTG	GGA(GAT.	AGT	TCC"	TCA	AGT	ACC
	Y	D.	E I	F I	E (j	V (Q !	D 1	DI	<u>(</u>	2	L (j		S	5	5 8	5	ľ.
941	AGI	GCA	UAI	1166	JAI.	161	IAL	AAA	UCA	GAA	JAI	1110 E	5C11	116	JAC.	AAI	JAA.	AAG	JII.	116
001	5	A	H TTA	L	U COM		I CCA	R TAC	P	E	D	г • • •	A	M CTA	U 2470	IN CAA	E	K A A CI	V CCTV	L
001	D	v	IIA	D	C	F	D	v	C C	M	v	v	DAO	I	D	0	T T	MACI	D	D
061	TAC		CAT	ICA.		- L.	1 ГАТ'	I TTC	TCA	TCCI	у ~тл	n fct	L A T A	L	чт чт	ч ста	1 CA 4	CTA	ICC.	D MC
001	V	V	UAL U	T	T	DAA D	v	E	c ICA	c c	1	e c	T	U U	D	v	O	T	T	N
121	CAT	CAA	II ACT	I TCA		т. С.М.	I TC AI	r CACI	GAN	ссти	L CATI	отс.	CAT.	II MC	гтс	TTC	ч тлс	ССТИ	сте	CGA
121	н	F	т	S	n	р	S	0	F	6	D	I	н	K	I	I	V	P	V	R
181	GTT	CAG	ATC	тста	AAA	ATG	ETGI	¶ GAC	CCG	CCA	FGT	GAA	GGT	GA	GAC	TGG	ATT	GCA	, TTA	GCT
101	V	0	I	S	K	M	L	D	P	P	C	E	G	G	D	W	T	A	L	A
241	AAT	GCT	CTT	GGT	TTA	TTT	GAA	CTA	ATG	GAC	- AGT(CAG	AGT	- FCA(GA	TAC	AGT	CAG	ACA	AGA
	N	A	L	G	L	F	E	L	M	D	S	0	S	S	G	Y	S	0	T	R
301	GTC	TTA	CTG.	AAT	TTT	FAT	GAG	GAA	TAT	GGA	GGT	ACA	ATC	ICA'	ГАО	CTA	ATG	GAA'	TGT	TTA
	V	L	L	Ν	F	Y	Е	Е	Y	G	G	Т	Ι	S	Y	L	M	Е	С	L
361	ACA	TCA	ATG	GGTA	AGA	ATG	GAT	GTT	GTA	TCA	ITG.	ATA	TCA	CAG	FAT	CAT	TCA	TCT	AGT	TCA
	Т	S	М	G	R	M	D	V	V	S	L	Ι	S	Q	Y	Н	S	S	S	S
421	TTA	AAG	AAA	AGT/	AGT	ACA	AAT.	ATA	AAC	TAT	ГАС	GAT	ГСА	GGA	FTG.	AGT	ICO	GGT	GAT	GTC
	L	K	K	S	S	Т	Ν	Ι	Ν	Y	Y	D	S	G	L	S	S	G	D	V
481	AAA	CCA	TTA	CAG	ACT	ГТA	ACG	GCA	GCT.	ACA	ΓAA	tca	ttt	ttca	atc	tat	atc	gtca	atta	atc
	Κ	Р	L	Q	Т	L	Т	А	А	Т	*									
541	ctg	tat	atg	atca	ata	aaa	caa	ctt	ttt	gtc	ttg	ttt	act	tgt	ttt	aaa	tca	cac	gtt	ggt
601	tga	gtt	att	ttaa	att	gac	tac	atg	gat	ttg	ttc	tat	taa	tta	tca	gtt	atg	aat	tca	ttt
661	tac	atc	act	tca	tat	ttt	atg	att	atg	aat	tga	caa	ttaa	atta	atg	tag	atg	gtca	ata	tgt
721	gct	gta	tat	aaga	acta	ata	aac	atg	tca	tgt	ttt	ggt	aag	gta	gtt	ttt	cga	caa	cct	tga
781	tta	tgc	cac	aato	caga	aaa	tag	aga	tgg	aga	cag	tga	ggto	caa	aat	tta	ata	cta	tag	gta
841	acc	aag	gga	cca	caa	tag	agta	agt	att	att	taa	agt	gat	gtca	att	tta	aat	gaga	aaa	aaa
901	aaa	cat	gaa	ttt	tgc	taa	gaa	caa	ctg	aat	tgti	aaa	aaaa	ata	ctt	caa	ttt	gta	ttg	tgc
961	aga	aat	tgt	ataa	aca	gta;	gca	ttt	tgg	tata	att	ttt	atg	ttg	ttc	att	agt	taaa	aca	gaa
021	+++	ant.	a + +.	no ta	oot.	et o		taa	a t a	tot.	$1 \pm \alpha$	to to	too				0.0.0			

图 1 McNF-κB基因 cDNA 全长及推导的氨基酸序列

aaaaaaa

Fig. 1 Full-length cDNA and deduced amino acid sequences of $McNF-\kappa B$ gene

下划线表示起始密码子 ATG; "*"表示终止密码子; 灰色区域表示 ANK 结构域; 黑色方框表示死亡结构域

The start codon ATG is underlined; the stop codon is indicated by an asterisk; the gray area represents the ANK domain;

the black box represents the DEATH domain

讨论 4

NF-кB转录因子的研究多集中在脊椎动物和果

蝇的免疫调控机制[41-45],而在贝类中少有研究,尤其 是贝类变态发育过程中的作用不清楚,因此研究 NFкB 基因在厚壳贻贝免疫和发育中的作用具有重要意

21

513 592 725 542 409		
553		
608		
765		
582		
589 647 802		
486		

人 H. sapiens NF-кB 1 黑腹果蝇 D. melanogaster relish isoform A 地中海贻贝 M. galloprovincialis NF-кB-a 欧洲贻贝 M. edulis NF-кB1 厚売贻贝 M. coruscus NF-кB Consensus	EATVGNGEVTLTYATGTKEESAGVQDNLFLEKAMQLAKRH NKQNLDIKEQSENEISVKSQFQDFSAQTESDDVMHIVDRT NKPNLDIKEQSENEISVKSQFQDFSAQTESDDVMHIVDRT NKQNLDIKEKSEHEISVKSQSQDFSAQTESDDVMHIVDRT	513 592 725 542 409
人 H. sapiens NF-кВ 1 黑腹果蝇 D. melanogaster relish isoform A 地中海胎贝 M. galloprovincialis NF-кВ-а 欧洲贻贝 M. edulis NF-кВ1 厚壳贻贝 M. coruscus NF-кВ Consensus	ANALFDYAVTGDVEMLLAVQEHITAVOTENG SVELASS ALNYYNETILEEVIS SKALQFYAATGNIKQLLFVQENLLSISDDSG LFHETAII SKALQFYAATGNIKQLLFVQENLLSISDDSG LFHETAII G lh	553 608 765 582
人 H. sapiens NF-кВ 1 黑腹果蝇 D. melanogaster relish isoform A 地中海贻贝 M. galloprovincialis NF-кВ-а 欧洲贻贝 M. edulis NF-кВ1 厚壳贻贝 M. coruscus NF-кВ Consensus	HLHSQLVRDLLEVTSGISDDIINMR.NDIYQTELHU HKKDKKLKLIQTIQVMNYRNLKDVVNSTL.NADGSAHV NNQLEVIHNLLDVMSTIPYCRYKSSAYNSIRGTELHU NNQLEVIHNLLDVMSTIPYCRYKSSAYNSIRGTELHU NNQLEVIHNLLDVMSTIPYCRYKSSAYNSIRGTELHU n lh	589 647 802 619 486
人 H. sapiens NF-кВ 1 黑腹果蝇 D. melanogaster relish isoform A 地中海贻贝 M. galloprovincialis NF-кВ-а 欧洲贻贝 M. edulis NF-кВ1 厚壳贻贝 M. coruscus NF-кВ Consensus	AVITKGEDVVEDILRAGADLSLIDRIGNSVLETRAKEGHD RCCQDRAHVIRFILGNGCNPNLKNAGNTFILVVVREH AVIMGOPSVUDRLINNGADFINVDRKGNSPALIYAD AVIMGOPSVUDRLINNGADFINVDRKGNSPALIYAD AVIMGOPSVUDRLINNGADFINVDRKGNTFALIYAD A 11 g gn h a	629 687 842 659 526
人 H. sapiens NF-кВ 1 黑腹果蝇 D. melanogaster relish isoform A 地中海贻贝 M. galloprovincialis NF-кВ-а 欧洲贻贝 M. edulis NF-кВ1 厚壳贻贝 M. coruscus NF-кВ Consensus	K.VISTILKHKKAALLUHHENGDGINAIHIAMM SCVESTINGVPTVQLDISITNDGITPIHVJIR S.CLAIVRYQRCNVAKNKPFFPILENHDGFSTAHIAJI S.CLAIVRYQRCNAAKNKPFFPILENHDGFSTAHIAJA I l n dg h a	661 720 881 698 565
人 H. sapiens NF-кВ 1 黑腹果蝇 D. melanogaster relish isoform A 地中海贻贝 M. galloprovincialis NF-кВ-а 欧洲贻贝 M. edulis NF-кВ1 厚壳贻贝 M. coruscus NF-кВ Consensus	SNSLPCIL. PUVARGADVNAQEQKSGRTADHIAVEHDNIS QNKYDVAKAPISYDRTSISVANTMIGNNALHAVELQSVE TQNCNAMK. JISKCKGNINMPDGKSGRTEHHAVERDDIT TQNCNAMK. JISKCKGNINMPDGKSGRTEHHAVERDDIT 1 g lh av	700 760 920 737 604
人 H. sapiens NF-кВ 1 黑腹果蝇 D. melanogaster relish isoform A 地中海贻贝 M. galloprovincialis NF-кВ-а 欧洲贻贝 M. edulis NF-кВ1 厚壳贻贝 M. coruscus NF-кВ Consensus	LACCLLEGDAHVDSTTYDGITFHHIVAGRGSTRLAALIK LLVLILDACNENLTDIRGAQNAAGHTPLELAER TVGYLILEARANVNACCFDGNTFHVACARQNVGIVALLI TVGYLILEARANVNACCFDGNTFHVACARQNVGIVALLI TVGYLILEARANVNACCFDGNTFHVACARQNVGIVALLI 1	740 793 960 777 644
人 H. sapiens NF-кВ 1 黑腹果蝇 D. melanogaster relish isoform A 地中海贻贝 M. galloprovincialis NF-кВ-а 欧洲贻贝 M. edulis NF-кВ1 厚壳贻贝 M. coruscus NF-кВ Consensus	BAGADELVENTE FLYT DD SWENAGEDEGVV PGTTPL RANDRVVQLLKNVYPEKGDIANTWIPCKVKEEIDSSDES RAGODFEMENDEVKEEIYDEFEGVQDDKQM AAGODFEMENDEVKEEIYDEFEGVQDDKQL a	777 833 990 807 674
人 H. sapiens NF-кВ 1 黑腹果蝇 D. melanogaster relish isoform A 地中海贻贝 M. galloprovincialis NF-кВ-а 欧洲贻贝 M. edulis NF-кВ1 厚壳贻贝 M. coruscus NF-кВ Consensus	DMATSWOVFDILNGKEVEPEFTSDDLDAQGDMKOLAEDVK SDAGQLEIKSEEMDIETKDEDSVELDSSGPROKDESSR GDNSSNTSAHLDCYKEPDFAMDNEKVP GDNSSNTSAHLDCYKEPDFAMDNEKVP GDNSSNTSAHLDCYKEDFAMDNEKVP RVLRGEPYSNVKE 1	817 873 1 030 847 714
人 H. sapiens NF-кB 1 黑腹果蝇 D. melanogaster relish isoform A 地中海贻贝 M. galloprovincialis NF-кB-a 欧洲贻贝 M. edulis NF-кB1 厚壳贻贝 M. coruscus NF-кB Consensus	LQLYKLLEIPDEDKNWATLACKLGIGILNNAFR DTEMENNKLQLLKNKFIYDRICSILNQPIGHGSDPQDRK LDQTDRDYIHTTDYFSSLSIQDIQLANHGTSDP LDQTDRDYIHTTDYFSSLSIQDIQLANHGTSDP LDQTNRDYKHTTEYFSSLSIHDVQLTNHETSDP	850 913 1 063 880 747
人 H. sapiens NF-кВ 1 黑腹果蝇 D. melanogaster relish isoform A 地中海贻贝 M. galloprovincialis NF-кВ-а 欧洲贻贝 M. edulis NF-кВ1 厚売贻贝 M. coruscus NF-кВ Consensus	H LSPAPSKTIMDNYEVSGGTIRETVEALROM WMQLARQTHLKQFAFIWLGAEDILHVKRK SQEGDLHKLMYEVRVQISKMLDPPCEGGDWIAPANALGLF SQEGDLHKLYPVRVQISKMLDPPCEGGDWIAPANALGLF SQEGDLHKLYPVRVQISKMLDPPCEGGDWIAPANALGLF 1	880 943 1 103 920 787
人 H. sapiens NF-кВ 1 黑腹果蝇 D. melanogaster relish isoform A 地中海贻贝 M. galloprovincialis NF-кВ-а 欧洲贻贝 M. edulis NF-кВ1 厚壳贻贝 M. coruscus NF-кВ Consensus	GYTEAIEVICAASSPÜKTISQAHSLPLSPASTRQQIDELR GASVEFSTFARALQAVDFQAYALLVNPT ELMDSQSPGYSQTRVLLNFYEEYGGTISYLMECLTSMGRM ELMDSQSSGYSQTRVLLNFYEEYGGTISYLMECLTSMGRM ELMDSQSSGYSQTRVLLNFYEEYGGTISYLMECLTSMGRM	920 971 1 143 960 827
人 H. sapiens NF-кВ 1 黑腹果蝇 D. melanogaster relish isoform A 地中海贻贝 M. galloprovincialis NF-кВ-а 欧洲贻贝 M. edulis NF-кВ1 厚壳贻贝 M. coruscus NF-кВ Consensus	SDSVCDTGVETSFREISFTESITSGASIILLINKMEHDYG DVVSLISGYHSSSILKSNTNMCYDSGISSGDVKELGTL DVVSLISGYHSSSILKSNTNMCYDSGISSGDVKELGTL TVVSLISGYHSSSILKSSTNINYYDSGISSGDVKELGTL	960 971 1 183 1 000 867

图 3 不同物种 NF-кB 氨基酸序列多重比对分析

Fig. 3 Multiple alignment analysis of NF-kB amino acid sequences of different species

绿色框线表示具有多个 ANK 结构域; 红色框线表示死亡结构域; 深色背景中的氨基酸序列具有 100% 的同源性;

粉色背景中氨基酸具有大于 75% 的同源性;绿色背景中氨基酸具有大于 50% 的同源性

Green borders indicate multiple ANK domains; red borders indicate DEATH domain; the amino acids in dark gray boxes indicate conserved residues with 100% homology; the amino acids in pink boxes show conservation of residues with > 75% homology; the amino acids in green boxes show conservation of

residues with > 50% homology

义。本研究克隆了厚壳贻贝 McNF-κB 基因,该基因 编码 871个氨基酸。其氨基酸序列包含了6个 ANK 结构域和1个死亡结构域。NF-κB 家族蛋白通 过 C 端存在不同的结构可以分为两类: Calss I和 Calss II。Calss I 蛋白的 C 端含有多个具有反式阻遏 作用的 ANK 结构域和 1 个死亡结构域, Calss II 蛋白的 C 端有拓扑相关结构域(Topologically Associating Domains, TAD)^[40]。Calss I 蛋白合成后需要先水解掉C 端的锚蛋白重复序列 ANKs, 再加工后具有转录激活作用。由于 TAD 有正向调节基因表达的作用,

Calss II 蛋白在合成后便具有转录激活作用^[13]。因此 厚壳贻贝 *McNF-κB* 基因结构域与 Calss I 类蛋白的 C 端特征一致。通过氨基酸序列比对分析发现, 厚壳 贻贝 McNF-κB 与双壳贝类的欧洲贻贝和地中海贻贝 进行比对具有较高的一致性, 分别为 72.76% 和 66.58%, 结合系统进化树中该基因与其他软体动物最 终聚为一枝的结果, 说明该基因属于 NF-κB 家族。

有研究发现在太平洋牡蛎(C.gigas)^[29] 中 CgRel 基 因在鳃中表达最高, 鳃作为直接接触外界环境的组 织, 易受到病原菌的侵害而产生免疫反应。此外, 在 太平洋牡蛎(C.gigas)^[29]、九孔鲍(H. diversicolor supertexta)^[50] 和栉孔扇贝(C. farreri)^[33] 中的 NF-κB 基因 是具有免疫作用的。本研究结果表明, McNF-κB 基因 在厚壳贻贝各组织中均有分布, 在鳃中表达最高, 其 次是外套膜和唇瓣, 推测 McNF-κB 基因与鳃、外套膜 和唇瓣的滤食或直接接触外界环境所起到的防御前 线功能有关,暗示该基因在厚壳贻贝机体中也发挥着 免疫作用。

附着变态过程是厚壳贻贝生长发育的关键, 幼虫进入变态时, 其外部特征、内部构造、生理机能和生活习性等方面会产生不小改变, 如壳型改变、面盘萎缩、变态后分泌足丝营附着生活。幼虫变态完成后会出现鳃, 而 McNF-κB 基因在鳃中表达量最高, 推测McNF-κB 基因可能与幼虫变态发育有关。对此, 本研究进行了幼虫变态前后阶段的 McNF-κB 基因定量, 结果发现 McNF-κB 基因在稚贝阶段的表达显著高于眼点幼虫阶段。有关免疫反应和幼虫变态的关系, Davidson 和 Sualla^[46] 推测在毛海鞘(Boltenia villosa)幼虫变态过程中免疫反应不仅协调幼虫组织的吸收, 也应对幼虫组织凋亡和再生带来的异常应激水平。同

样在厚壳贻贝幼虫变态过程中,可能存在类似情况, 具体机理还需进一步探究。除此之外,也有研究发现 不少物种的幼虫变态前后阶段有关免疫的基因呈现 差异性表达,如笠贝(Lottia gigantea)^[47]、耳鲍(Haliotis asinina)^[48]和玻璃海鞘(Ciona intestinalis)^[49]。为了 进一步验证 McNF-κB 基因是否参与调控幼虫变态过 程,本研究选用 EPI 作为变态的诱导剂^[4]进行 RNA 干 扰实验。

本研究中,在 EPI 诱导 72 h 后,仅电击后 EPI 诱 导组的变态率相对 EPI 诱导组显著下降,这与刘志显 等^[50]的结果一致。McNF-κB siRNA转染后的幼虫变 态率相对于 EPI 诱导对照组和 NC siRNA 转染后 EPI诱导组分别下降了 86.9% 和 76%, 说明在 McNFκB siRNA转染后抑制了幼虫变态,表明 McNF-κB基 因在厚壳贻贝幼虫变态过程中发挥作用。NF-кB 信 号通路中的 Toll 样受体通路的 TLR 可以识别病原表 面保守的病原相关分子模式(PAMPs)如脂多糖和鞭 毛蛋白等,在TLR被识别后,募集髓样分化因子 88(Myeloid Differentiation Factor88, MyD88) 后激活下 游信号通路,最终激活 NF-кB 转录因子[51-52]。本课题 组以往研究发现,脂多糖和鞭毛蛋白对厚壳贻贝幼虫 变态具有诱导活性[53-54],同时本研究的 McNF-κB 基因 对幼虫变态具有作用,推测脂多糖和鞭毛蛋白可能通 过激活 Toll 样受体通路诱导幼虫变态,即 McNFкB 基因可以通过 Toll 样受体通路途径参与调控幼虫 变态过程。在 NF-κB 信号通路的 TNF 受体通路中凋

亡抑制因子(Inhibitor of Apoptosis Proteins, IAPs)可以 诱导 NF-кB的活化而抑制凋亡基因 *caspase* 的表达起 到抗凋亡的作用^[55-57],但有研究发现 NF-кB 也会抑制 抗凋亡基因的活化从而促进凋亡^[58],也有研究发现 NF-кB 在特殊的刺激或细胞种类中具有促凋亡作 用^[59-69]。以往研究发现厚壳贻贝 *McCaspase 3-4* 基因 参与调控幼虫变态^[50],因此推测 *McNF-кB* 基因可能 同*McCaspase 3-4* 基因一样在幼虫变态过程中起到了 促凋亡的作用,两者具体的关系还有待进一步研究。 除此之外,也有研究发现其他物种的 NF-кB 对生长发 育具有调控作用,如在鱼类脊索周围的组织发育过程 中起关键作用^[61],非洲爪蟾(*Xenopus laevis*)中克隆出 的 Rel 同源物在发育中的大脑神经晚期表达^[62],果蝇 的 Dorsal 蛋白决定其背腹轴的形成^[18]。

本研究克隆得到了厚壳贻贝*McNF-кB*基因 cDNA 全长,其具有 ANK 结构域和死亡结构域。通 过分析 *McNF-кB*基因在各组织的表达情况,推测该 基因参与调控厚壳贻贝免疫过程。通过分析 *McNF-кB* 基因在不同发育阶段中的表达情况及 *McNF-кB*基 因 RNA 干扰后的结果,推测该基因参与调控厚壳贻 贝的变态发育过程。厚壳贻贝是我国重要的水产养 殖物种之一,其幼虫变态率对提高苗种存活率及产量 具有决定性的作用,因此探究厚壳贻贝发育过程中变 态相关的分子作用机制具有重大的意义,*McNF-кB*基 因在厚壳贻贝发育过程中所起到具体的调控机制还 需深入探究。

参考文献:

- [1] 杨金龙, 李树恒, 刘志伟, 等. 厚壳贻贝胚胎和早期幼虫神经系统发育的初步研究[J]. 水产学报, 2013, 37(4): 512-519.
 Yang Jinlong, Li Shuheng, Liu Zhiwei, et al. Primary study on neuronal development of the embryo and early larvae of the mussel *Mytilus coruscus*[J]. Journal of Fisheries of China, 2013, 37(4): 512-519.
- [2] Yang Jinlong, Li Shuheng, Li Yifeng, et al. Effects of neuroactive compounds, ions and organic solvents on larval metamorphosis of the mussel *Mytilus coruscus*[J]. Aquaculture, 2013, 396–399: 106–112.
- [3] 王朝新. 厚壳贻贝苗种规模化繁育技术[J]. 现代农业科技, 2021(17): 208-210.
 Wang Chaoxin. Large-scale breeding technology of the mussel *Mytilus coruscus* seeds[J]. Modern Agricultural Science and Technology, 2021(17): 208-210.
- [4] Wang Chong, Bao Weiyang, Gu Zhongqi, et al. Larval settlement and metamorphosis of the mussel *Mytilus coruscus* in response to natural biofilms[J]. Biofouling, 2012, 28(3): 249–256.
- [5] 刘钰珠. Toll样受体在厚壳贻贝免疫和发育中的作用研究[D]. 上海: 上海海洋大学, 2019.
 Liu Yuzhu. Effect of Toll-like receptor on immunity and development of *Mytilus coruscus*[D]. Shanghai: Shanghai Ocean University, 2019.
- [6] 徐跃峰, 李一峰, 梁箫, 等. 厚壳贻贝 Wnt4基因时空表达[J]. 水产学报, 2016, 40(10): 1567-1575.
 Xu Yuefeng, Li Yifeng, Liang Xiao, et al. Temporal-spatial expression of Wnt4 gene in the mussel Mytilus coruscus[J]. Journal of Fisheries of China, 2016, 40(10): 1567-1575.
- [7] Xu Yuefeng, Liang Xiao, Chen Yuru, et al. *Wnt7b* gene expression and functional analysis in the mussel *Mytilus coruscus*[J]. Genetics and Molecular Research, 2016, 15(4): gmr15048866.
- [8] Zhu Youting, Zhang Ya, Liu Yuzhu, et al. Nitric oxide negatively regulates larval metamorphosis in hard-shelled mussel (*Mytilus corus-cus*)[J]. Frontiers in Marine Science, 2020, 7: 356.

- [9] Yuk J M, Jo E K. Toll-like receptors and innate immunity[J]. Journal of Bacteriology and Virology, 2011, 41(4): 225–235.
- [10] Du Qiang, Geller D. Cross-regulation between Wnt and NF-κB signaling pathways[J]. Forum on Immunopathological Diseases and Therapeutics, 2010, 1(3): 155–181.
- [11] Zinatizadeh M R, Schock B, Chalbatani G M, et al. The Nuclear Factor Kappa B (NF-κB) signaling in cancer development and immune diseases[J]. Genes & Diseases, 2021, 8(3): 287–297.
- [12] Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences[J]. Cell, 1986, 46(5): 705–716.
- [13] Ghosh S, May M J, Kopp E B. NF-κB and REL proteins: evolutionarily conserved mediators of immune responses[J]. Annual Review of Immunology, 1998, 16: 225–260.
- [14] Sen R, Baltimore D. Inducibility of κ immunoglobulin enhancer-binding protein NF- κ B by a posttranslational mechanism[J]. Cell, 1986, 47(6): 921–928.
- [15] 孙伟东, 张志强, 朴大勋. NF-κB信号通路抑制结肠炎及炎症相关结肠癌的研究[J]. 医学综述, 2020, 26(8): 1521–1525. Sun Weidong, Zhang Zhiqiang, Piao Daxun. Research progress of NF-κB signaling pathway inhibition on colitis and inflammation-associated colon cancer[J]. Medical Recapitulate, 2020, 26(8): 1521–1525.
- [16] Govind S. Control of development and immunity by Rel transcription factors in Drosophila[J]. Oncogene, 1999, 18(49): 6875–6887.
- [17] Kleino A, Ramia N F, Bozkurt G, et al. Peptidoglycan-sensing receptors trigger the formation of functional amyloids of the adaptor protein Imd to initiate *Drosophila* NF-κB signaling[J]. Immunity, 2017, 47(4): 635–647.e6.
- [18] Rusch J, Levine M. Regulation of the dorsal morphogen by the Toll and torso signaling pathways: a receptor tyrosine kinase selectively masks transcriptional repression[J]. Genes & Development, 1994, 8(11): 1247–1257.
- [19] Barillas-Mury C, Charlesworth A, Gross I, et al. Immune factor Gambif1, a new rel family member from the human malaria vector, Anopheles gambiae[J]. The EMBO Journal, 1996, 15(17): 4691–4701.
- [20] Yu Aiqing, Jin Xingkun, Li Shuang, et al. Molecular cloning and expression analysis of a dorsal homologue from *Eriocheir sinensis*[J]. Developmental & Comparative Immunology, 2013, 41(4): 723–727.
- [21] Shin S W, Kokoza V, Lobkov I, et al. Relish-mediated immune deficiency in the transgenic mosquito Aedes aegypti[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(5): 2616–2621.
- [22] Shin S W, Kokoza V, Bian Guowu, et al. REL1, a homologue of *Drosophila* dorsal, regulates Toll antifungal immune pathway in the female mosquito *Aedes aegypti*[J]. Journal of Biological Chemistry, 2005, 280(16): 16499–16507.
- [23] Huang Xiande, Yin Zhixin, Liao Jixiang, et al. Identification and functional study of a shrimp Relish homologue[J]. Fish & Shellfish Immunology, 2009, 27(2): 230–238.
- [24] Huang Xiande, Yin Zhixin, Jia Xiaoting, et al. Identification and functional study of a shrimp Dorsal homologue[J]. Developmental & Comparative Immunology, 2010, 34(2): 107–113.
- [25] 梁芳梅,朱鹏,邱春桃,等.长毛明对虾核转录因子NF-кB家族基因的克隆及在细菌侵染过程中的表达变化[J].中国水产科学,2022, 29(11):1551-1563.

Liang Fangmei, Zhu Peng, Qiu Chuntao, et al. Cloning and expression analysis of NF-κB family genes under bacterial infection of *Fenneropenaeus penicillatus*[J]. Journal of Fishery Sciences of China, 2022, 29(11): 1551–1563.

- [26] 赵姣姣, 陶震, 周素明, 等. 三疣梭子蟹NF-κB家族基因Relish和Dorsal的克隆及表达特征[J]. 水生生物学报, 2019, 43(2): 298-304. Zhao Jiaojiao, Tao Zhen, Zhou Suming, et al. Cloning and expression of NF-κB family genes in *portunus trituberculatus*[J]. Acta Hydrobiologica Sinica, 2019, 43(2): 298-304.
- [27] Huang Xiande, Liu Wenguang, Guan Yunyan, et al. Molecular cloning and characterization of class I NF-κB transcription factor from pearl oyster (*Pinctada fucata*)[J]. Fish & Shellfish Immunology, 2012, 33(3): 659–666.
- [28] Wu Xi, Xiong Xunhao, Xie Liping, et al. *Pf*-rel, a rel/nuclear factor-κB homolog identified from the pearl oyster, *Pinctada fucata*[J]. Acta Biochimica et Biophysica Sinica, 2007, 39(7): 533–539.
- [29] Montagnani C, Kappler C, Reichhart J M, et al. Cg-Rel, the first Rel/NF-κB homolog characterized in a mollusk, the Pacific oyster Crassostrea gigas[J]. FEBS Letters, 2004, 561(1/3): 75–82.
- [30] Jiang Yusheng, Wu Xinzhong. Characterization of a Rel/NF-κB homologue in a gastropod abalone, *Haliotis diversicolor supertexta*[J]. Developmental & Comparative Immunology, 2007, 31(2): 121–131.
- [31] De Zoysa M, Nikapitiya C, Oh C, et al. Molecular evidence for the existence of lipopolysaccharide-induced TNF-α factor (LITAF) and Rel/NF-kB pathways in disk abalone (*Haliotis discus discus*)[J]. Fish & Shellfish Immunology, 2010, 28(5/6): 754–763.
- [32] Zhang Siming, Coultas K A. Identification and characterization of five transcription factors that are associated with evolutionarily conserved immune signaling pathways in the schistosome-transmitting snail *Biomphalaria glabrata*[J]. Molecular Immunology, 2011, 48(15/16): 1868–1881.
- [33] Zhou Zhi, Wang Mengqiang, Zhao Jianmin, et al. The increased transcriptional response and translocation of a Rel/NF-κB homologue in scallop *Chlamys farreri* during the immune stimulation[J]. Fish & Shellfish Immunology, 2013, 34(5): 1209–1215.
- [34] Yang Jinlong, Li Yifeng, Bao Weiyang, et al. Larval metamorphosis of the mussel *Mytilus galloprovincialis* Lamarck, 1819 in response to neurotransmitter blockers and tetraethylammonium[J]. Biofouling, 2011, 27(2): 193–199.
- [35] Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology

```
and Evolution, 2018, 35(6): 1547-1549.
```

- [36] Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences[J]. Journal of Molecular Evolution, 1980, 16(2): 111–120.
- [37] 梁箫,陈珂,陈艳文,等. 厚壳贻贝5-羟色胺2A受体(5-HT2AR)基因克隆和时空表达[J]. 水产学报, 2018, 42(12): 1869–1879.
 Liang Xiao, Chen Ke, Chen Yanwen, et al. 5-HT2AR gene clone and temporal-spatial expression in the mussel *Mytilus coruscus*[J].
 Journal of Fisheries of China, 2018, 42(12): 1869–1879.
- [38] Li Yifeng, Cheng Yulan, Chen Ke, et al. Thyroid hormone receptor: a new player in epinephrine-induced larval metamorphosis of the hard-shelled mussel[J]. General and Comparative Endocrinology, 2020, 287: 113347.
- [39] Liang Xiao, Chen Ke, Li Yifeng, et al. An α₂-adrenergic receptor is involved in larval metamorphosis in the mussel, *Mytilus coruscus*[J]. Biofouling, 2019, 35(9): 986–996.
- [40] Gilmore T D. The Rel/NF-κB signal transduction pathway: introduction[J]. Oncogene, 1999, 18(49): 6842-6844.
- [41] Manfruelli P, Reichhart J M, Steward R, et al. A mosaic analysis in *Drosophila* fat body cells of the control of antimicrobial peptide genes by the Rel proteins Dorsal and DIF[J]. The EMBO Journal, 1999, 18(12): 3380–3391.
- [42] Rutschmann S, Jung A C, Hetru C, et al. The Rel protein DIF mediates the antifungal but not the antibacterial host defense in Drosophila[J]. Immunity, 2000, 12(5): 569–580.
- [43] Aggarwal K, Silverman N. Positive and negative regulation of the Drosophila immune response[J]. BMB Reports, 2008, 41(4): 267–277.
- [44] Silverman N, Maniatis T. NF-κB signaling pathways in mammalian and insect innate immunity[J]. Genes & Development, 2001, 15(18): 2321–2342.
- [45] Hedengren M, BengtÅsling, Dushay M S, et al. Relish, a central factor in the control of humoral but not cellular immunity in Drosophila[J]. Molecular Cell, 1999, 4(5): 827–837.
- [46] Davidson B, Swalla B J. A molecular analysis of ascidian metamorphosis reveals activation of an innate immune response[J]. Development, 2002, 129(20): 4739–4751.
- [47] 尹诚, 张丽莉, 王国栋, 等. 笠贝幼虫变态相关基因筛选及分子网络构建[J]. 集美大学学报(自然科学版), 2015, 20(5): 339-347.
 Yin Cheng, Zhang Lili, Wang Guodong, et al. Indentification of metamorphosis related genes and development of molecular networks of *Lottia gigantea* larval[J]. Journal of Jimei University (Natural Science), 2015, 20(5): 339-347.
- [48] Williams E A, Degnan B M, Gunter H, et al. Widespread transcriptional changes pre-empt the critical pelagic-benthic transition in the vetigastropod *Haliotis asinina*[J]. Molecular Ecology, 2009, 18(5): 1006–1025.
- [49] Azumi K, Sabau S V, Fujie M, et al. Gene expression profile during the life cycle of the urochordate *Ciona intestinalis*[J]. Developmental Biology, 2007, 308(2): 572–582.
- [50] 刘志显,李嘉政,梁邻利,等. 厚壳贻贝McCaspase 3-4基因的克隆及其在幼虫变态中的作用[J]. 水生生物学报, 2022, 46(8): 1168-1176.

Liu Zhixian, Li Jiazheng, Liang Linli, et al. Molecular cloning of *McCaspase 3–4* and its functions in *Mytilus coruscus* larval metamorphosis[J]. Acta Hydrobiologica Sinica, 2022, 46(8): 1168–1176.

- [51] Hayden M S, Ghosh S. Signaling to NF-KB[J]. Genes & Development, 2004, 18(18): 2195-2224.
- [52] Bonizzi G, Karin M. The two NF-κB activation pathways and their role in innate and adaptive immunity[J]. Trends in Immunology, 2004, 25(6): 280–288.
- [53] 吴静娴,李嘉政,胡晓梦,等. 脂多糖对细菌生物被膜形成及厚壳贻贝幼虫变态的影响[J]. 水产学报, 2022, 46(11): 2134-2142.
 Wu Jingxian, Li Jiazheng, Hu Xiaomeng, et al. Effects of lipopolysaccharide on biofilm formation and larval metamorphosis of the mussel *Mytilus coruscus*[J]. Journal of Fisheries of China, 2022, 46(11): 2134-2142.
- [54] Liang Xiao, Zhang Xiukun, Peng Lihua, et al. The flagellar gene regulates biofilm formation and mussel larval settlement and metamorphosis[J]. International Journal of Molecular Sciences, 2020, 21(3): 710.
- [55] Chu Zhiliang, McKinsey T A, Liu L, et al. Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-κB control[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(19): 10057–10062.
- [56] Wang Cunyu, Mayo M W, Korneluk R G, et al. NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation[J]. Science, 1998, 281(5383): 1680–1683.
- [57] Papa S, Zazzeroni F, Pham C G, et al. Linking JNK signaling to NF-κB: a key to survival[J]. Journal of Cell Science, 2004, 117(22): 5197–5208.
- [58] Campbell K J, Rocha S, Perkins N D. Active repression of antiapoptotic gene expression by RelA(p65) NF-κB[J]. Molecular Cell, 2004, 13(6): 853–865.
- [59] Hettmann T, DiDonato J, Karin M, et al. An essential role for nuclear factor κB in promoting double positive thymocyte apoptosis[J]. Journal of Experimental Medicine, 1999, 189(1): 145–158.
- [60] Chen Xufeng, Kandasamy K, Srivastava R K. Differential roles of RelA (p65) and c-Rel subunits of nuclear factor κB in tumor necrosis factor-related apoptosis-inducing ligand signaling[J]. Cancer Research, 2003, 63(5): 1059–1066.
- [61] Kaltschmidt C, Greiner J F W, Kaltschmidt B. The transcription factor NF-κB in stem cells and development[J]. Cells, 2021, 10(8): 2042.
- [62] Lake B B, Ford R, Kao K R. Xrel3 is required for head development in Xenopus laevis[J]. Development, 2001, 128(2): 263–273.

Cloning of the *McNF-кB* gene of *Mytilus coruscus* and its role in development

Ren Hongyu^{1, 2}, Liu Tiantian^{1, 2}, Zhu Youting^{1, 2}, Yang Jinlong^{1, 2}, Liang Xiao^{1, 2}

(1. Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai Ocean University, Shanghai 201306, China; 2. International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai 201306, China)

Abstract: Nuclear factor κB (NF-κB) can regulate immunity, inflammation, apoptosis, cell proliferation, and organism development. At present, NF-κB has been well studied in vertebrates and fruit flies, while its role in shellfish is still elusive. In order to further explore the role of NF-κB in the immunity and development of mussel *Mytilus coruscus*, the full length *McNF-κB* cDNA sequence was cloned from *M. coruscus*. *McNF-κB* gene was 4 087 bp long, and the open reading frame was 2 613 bp, encoding 871 amino acids and had a typical ankyrinrepeat (ANK) domain and DEATH domain. The results of amino acid sequence analysis showed that the gene had 72.76% homology with *M. edulis* and 66.58% with *M. galloprovincialis*, respectively, and was clustered with *M. edulis* and *M. galloprovincialis* in the phylogenetic tree. The real-time PCR (qRT-PCR) technology showed that the *gill*. *McNF-κB* gene was expressed distributed in all tissues of *M. coruscus*, and the expression was the highest in the gill. *McNF-κB* gene was significantly higher in the pediveliger larvae stage than that in the juvenile stage. After using RNA interference technology to silence the *McNF-κB* gene of pediveliger larvae, the larval metamorphosis rate decreased significantly, indicating that this gene was involved in regulating the metamorphosis process of *M. coruscus*. This study provides a basis for exploring how *McNF-κB* gene regulates development of *M. coruscus*.

Key words: Mytilus coruscus; NF-KB; gene cloning; larval metamorphosis