第44卷 第10期	海	洋	学	报	Vol. 44 No. 10
2022年10月	I	Haiyang	, Xueba	0	October 2022

许晓燕,窦衍光,张勇,等. 冲绳海槽中南部柱状沉积物氧化还原敏感元素赋存机理与环境指示意义[J]. 海洋学报, 2022, 44(10): 63-79, doi:10.12284/hyxb2022186

Xu Xiaoyan, Dou Yanguang, Zhang Yong, et al. Occurrence mechanism of redox sensitive elements in columnar sediments in South Central Okinawa Trough and their environmental implications[J]. Haiyang Xuebao, 2022, 44(10): 63–79, doi:10.12284/hyxb2022186

冲绳海槽中南部柱状沉积物氧化还原敏感元素 赋存机理与环境指示意义

许晓燕^{1,2}, 窦衍光^{2,3*}, 张勇^{2,4}, 陈晓辉^{2,4}, 孙治雷^{2,4}, 白凤龙^{2,4}, 翟滨^{2,4}, 王利波^{2,4}, 邹亮^{2,4}

(1. 中国地质大学(武汉)海洋学院,湖北 武汉 430074; 2. 中国地质调查局青岛海洋地质研究所,山东 青岛 266237; 3. 青岛海洋科学与技术试点国家实验室 海洋地质过程与环境功能实验室,山东 青岛 266237; 4. 青岛海洋科学与技术试点国家实验室 海洋矿产资源评价与探测技术功能实验室,山东 青岛 266237)

摘要: 沉积物中氧化还原敏感元素(Redox Sensitive Element, RSE)含量变化是上覆水体氧化还原环 境良好的替代指标。本文通过冲绳海槽中南部两个柱状沉积物(深度:30 cm)粒度、总有机碳、总氮 及其同位素含量和氧化还原敏感元素含量等指标,探究复杂环境背景下冲绳海槽柱状沉积物中 RSE 的赋存机理与环境指示意义。研究发现,柱状沉积物中除了Cr亏损,其他RSE 均显示有不同程 度的富集。"粒控效应"对冲绳海槽柱状沉积物的RSE含量影响较小;分析可知,海水表层生产力是 影响沉积物氧化还原环境的主要因素,通过 Mn(氢)氧化物的吸附或解吸附作用实现RSE 的富集 与亏损。δCe、V/Cr、Ni/Co和 V/(V+Ni)等指标指示沉积物整体处于氧化-弱氧化环境。沉积物中 Mn 元素通过还原作用以 Mn²⁺形式向上扩散,在 25~30 cm 处被含氧间隙水氧化富集形成锰峰,指示 柱状沉积物 0~25 cm 处为氧化环境,25~30 cm 处为弱氧化环境。

关键词:环境指示意义;氧化还原敏感元素;Mn(氢)氧化物;柱状沉积物;冲绳海槽 中图分类号: P736.4⁺¹ **文献标志码:** A **文章编号:** 0253-4193(2022)10-0063-17

1 引言

海洋氧化还原环境研究已成为当前全球变化和 国际海洋学研究的一个重要领域^[1-3]。海水中溶解氧 (Dissolved Oxygen, DO)含量直接关系着海洋生态系 统的稳定,与生物的生存与进化息息相关^[4]。根据 DO含量的不同,沉积环境可分为有氧环境(DO含量> 2 ml/L)、弱氧化环境(0.2 ml/L<DO含量<2 ml/L)、缺 氧环境(不含 DO)或者硫化环境(不含 DO,含有 H₂S)^[5-6]。 在不同的氧化还原条件下,氧化还原敏感元素(Redox Sensitive Element, RSE)在孔隙水和沉积物之间不断 交换,导致沉积物中 RSE 相对富集或亏损^[7]。因此,海洋沉积物中 RSE 的含量变化可提供有关底层水氧 化还原条件的信息。

自 1925 年 Schmidt 首次在开阔大洋中层水中发现低氧现象后,许多学者对大陆架近岸海域、河口区等浅水海域以及大洋低氧区的氧化还原沉积环境开展了研究^[8-11]。河口和近岸海域低氧区数量和面积快

收稿日期:2022-02-09;修订日期:2022-06-22。

作者简介:许晓燕(1997—), 女, 广东省汕头市人, 主要从事海洋地质研究。E-mail: 1114323281@qq.com

*通信作者: 窦衍光(1979—), 男, 研究员, 主要从事海洋沉积地球化学研究。E-mail: douyangaung@gmail.com

基金项目:国家自然科学基金(41776077);国家海洋局国际合作项目(GASI-GEOGEO-04);中国地质调查局地质调查专项(DD20190205, DD20221710)。

速增多,人类活动造成的陆源输入增加和水体富营养化,被认为是低氧面积扩大的关键因素^[8,12-13]。

利用沉积物 RSE 的含量变化来研究现代和古海 洋氧化还原环境演化已经成为常用的研究手段[14-16]。 通常在氧化情况下, RSE 以易溶的离子形式存在, 当 水体氧气降低时,离子被还原成溶解度较低的物质富 集于沉积物中^[3, 4]。大部分 RSE(U、V、Cr、Ni、Cu 和 Zn等)在弱氧化-缺氧沉积环境富集, Mo 在硫化环境 富集; Ni、Cu、Zn 在硫化环境下还会形成自生硫化物 矿物富集到沉积物中[17-20]。然而,在边缘海沉积物中, RSE 富集水平并不是受氧化环境的单一影响, 也受其 他因素的影响,包括沉积粒度、生物扰动、成岩作用、 海水表层生产力、Fe-Mn(氢)氧化物循环和陆源输入 等[6.21]。沉积物粒度和有机质的吸附或络合作用、沉 积物早期成岩作用和 Fe-Mn(氢)氧化物循环的吸附 或捕获作用都可能影响沉积物中RSE富集程度[22-24]; 除此以外,海水表层生产力和陆源输入影响海水有机 质的通量,有机质降解耗氧也能间接影响水体的氧化 还原环境[20,25-26]。因此, RSE 的波动有时不能反映原 始上覆水体氧化还原环境的变化[25,27]。

冲绳海槽是连接东海陆架和西太平洋的重要过 渡带,水文和环流体系相当复杂,其中黑潮流系、黄 东海暖流系统以及与太平洋的水体交换都会影响冲 绳海槽底层水的通风状况^[28-30],同时陆源有机质的输 入以及海水表层生产力的变化都会影响水体中溶解 氧含量,使得冲绳海槽底层水氧化还原环境非常复 杂^[31]。目前,关于冲绳海槽沉积物中氧化还原敏感元 素的赋存机理与控制因素还不清楚。本文以冲绳海 槽中南部两个表层柱状样(30 cm)为研究对象,通过 沉积物粒度、总有机碳(Total Organic Carbon, TOC)、 总氮(Total Nitrogen, TN)及其同位素含量和氧化还原 敏感元素含量等指标,分析 RSE 垂向变化特征和控 制因素,探究复杂环境背景下冲绳海槽柱状沉积物 中 RSE 的赋存机理与环境指示意义。

2 材料与方法

2.1 研究材料

柱状样 DYBB27(26.196 9°N, 125.233 8°E)和 DYB228(26.866 3°N, 125.955 0°E)位于冲绳海槽中南 部,水深分别为1323 m和1277 m(图1)。柱状样沉 积物主要由灰黑色粉砂质黏土组成,含水量低,呈块 状结构,个别层位可见生物贝壳。

2.2 实验方法

两个柱状样 DYBB27 和 DYB228 分别以每样 1 cm

间隔取样,各取得 30 个样品,分别对沉积物样品进行 粒度、总有机碳、总氮及其同位素含量和常微量元素 含量测试。同时,每个柱状样各取1个有孔虫样品进 行 AMS¹⁴C 测年。

AMS¹⁴C:在每个柱状样底部 29~30 cm 处挑取有 孔虫样品开展 AMS¹⁴C 测试。将沉积样品测定年龄减 去碳库效应年龄即为样品碳库校正年龄,利用程序将 碳库校正年龄校准为 1950 年前的日历年龄,引用计 算误差为 1 sigma(1σ)(误差范围为±30 cal a BP),预 期值和测量值之间的误差在 2 sigma(2σ)以内(误差 范围为±60 cal a BP)。该检测由美国 Beta 实验室完成。

粒度测定:取样间距为1 cm,两个柱状样各取 30个样品进行粒度测试分析。首先将 0.3~0.6 g样 品放入烧杯中,先后加入 10 mL 10% H₂O₂和 10 mL 10% HCl 除去有机质和钙质成分,静置 12 h以上,慢 慢倒掉上部液体,加入 10 mL 30% 的六偏磷酸钠充分 分散样品颗粒,并将烧杯放置于超声振荡器上振荡 15 min,最后上机测量。使用激光粒度分析仪(型号 Mastersizer 2000,英国 Malvern)测定,该仪器的测量范 围为 0.02~2 000 μm,偏差小于 1%,重现性:Φ50 偏差 小于 1%。该实验在自然资源部第三海洋研究所实验室 完成。

总有机碳、总氮含量测试:取样间距为1 cm,两 个柱状样各取30个样品。取一定量的沉积物样品, 加入4 mol/L盐酸至过量,反应24 h,用去离子水洗至 中性,置于60℃烘箱内烘干,恒重后称量,研磨成粉 末后过筛(60目)。准确称量10 mg粉末样品,用4 mm× 6 mm 锡杯包样,使用元素分析仪(型号: Vario EL Ⅲ, 德国 Elementar)测定沉积物中总有机碳、总氮含量, 测量结果以百分含量(%)表示,测量误差均在小于 0.05% 标准偏差范围内。该实验在自然资源部第三海洋研 究所实验室完成。

δ¹³C和δ¹⁵N测试:取适量上述酸化的样品,使用 有机元素分析仪——稳定同位素质谱仪联机(型号 Flash EA 1112 HT-Delata V Advantages,美国 Thermo) 测定,测试精度为±0.2‰。δ¹³C值以 VPDB 国际标准 作为参考标准,计算公式为

 $\delta^{13}C_{\text{TOC}}(\%) = [R(^{13}C/^{12}C_{\text{sample}})/R(^{13}C/^{12}C_{\text{VPDB}}) - 1] \times 1000,$ (1)

式中, $R({}^{13}C/{}^{12}C_{sample})$ 为样品的碳同位素丰度比值; $R({}^{13}C/{}^{12}C_{VPDB})$ 为国际标准物 VPDB(Vienna Peedee Belemnite)的碳同位素丰度比值。

δ¹⁵N 值以空气中氮气作为参考标准,计算公式为 δ¹⁵N(‰) = $[R(^{15}N)^{14}N_{sample})/R(^{15}N)^{14}N_{Air})-1]\times 1000,$ (2) 式中, $R(^{15}N)^{14}N_{sample})$ 为样品的氮同位素丰度比值; $R(^{15}N)^{14}N_{Air})$ 为空气中氮气的氮同位素丰度比值。该 实验在自然资源部第三海洋研究所实验室完成。

常微量元素测定:取样间距为1 cm,两个柱状样 各取 30 个样品。精确称量 50 mg 沉积物样品,各加 入 1.5 mL HNO₃ 和 HF,在 190~200℃ 环境下消解 48 h, 然后定容至 50 g,上机测试。使用电感耦合原子发射 光谱仪(ICP-AES)(型号 IRIS Advantage,美国)测定样品 中Al₂O₃、Fe₂O₃、MgO、CaO、K₂O、Na₂O、MnO、TiO₂、P₂O₅ 常量元素的含量,用多接收器等离子体质谱(MC-ICP-MS)(型号 Agilent 7500a,德国)仪器测定 U、V、Cr、 Zn、Cu、Co、Ni 等微量元素的含量。此次常量元素分 析中使用国家标样(GSR5、GSR6、GSR9)及空白样进 行校正。微量元素分析测试分析中使用国家标样 (AGV-2、BHVO-2、BCR-2、RGM-2)进行校正。该实 验在同济大学海洋地质国家重点实验室完成。

2.3 数据分析

利用沉积物中δ¹³C值计算陆源和海洋自生有机 质来源的比例,计算公式为

$$\delta^{13}C_{\text{measured}} = f_t \delta^{13}C_{\text{terrestrial}} + f_m \delta^{13}C_{\text{marine}}, \qquad (3)$$

式中, f₁为陆源输入有机质占总有机质的比例; f_m为海 洋自生有机质占总有机质的比例, f₁+f_m=1; δ¹³C_{terrestrial}和 δ¹³C_{marine}分别为陆源输入和海洋自生有机质的δ¹³C端 元值, 计算中分别取-27‰和-20‰^[32]。

为了排除陆源输入的影响,用标准化元素 Al,通过(RSE/Al)_{sample}来评估沉积物中 RSE 的来源和贡献, 剔除非自生部分的影响^[21,33]。

通过沉积物中的 Al 含量来估算陆源钡, 从而得

出沉积物中生源钡(bio-barium,简称 Ba_{bio})的含量,计 算公式为

$$Ba_{bio} = Ba_{total} - (Al \times Ba/Al_{alusilicate}), \qquad (4)$$

式中, Ba_{total} 为总 Ba 含量, 这个公式假设沉积物中所 有的铝都是来自铝硅酸盐; Ba/Al_{alusilicate} = 0.007 5, 用于 估计陆壳 Ba 的丰度^[34]。

富集系数是元素分析中的重要参数,可以用来反 映沉积物中元素的含量相对于标准背景值的富集程 度。计算公式为

$$X_{EF} = (X/Al)_{sample} / (X/Al)_{std}, \qquad (5)$$

式中,(X/Al)_{sample} 为测试样品的元素比;(X/Al)_{std} 为所 选参考标准样品的元素比,选取后太古宙澳大利亚平 均页岩(Post-Archean Average Australian Shale, PAAS) 的元素比来替代平均页岩值,其中,X_{EF}<1表示亏损, X_{EF}>1显示富集, X_{EF}>3 明显富集, X_{EF}>10 则属中-强烈 富集^[21,33]。

铈异常(δCe)用PAAS 进行标准化, 计算公式^[35-36] 为
δCe =
$$\frac{Ce_{\# \oplus}/Ce_{{\rm KR} h m m}}{\sqrt{(La_{\# \oplus}/La_{{\rm KR} m m}) \times (Pr_{{\rm KR}}/Pr_{{\rm KR} m m})}}$$
, (6)

式中, $Ce_{\#a}$ 、 $La_{\#a}$ 和 $Pr_{\#a}$ 为样品中稀土元素铈、镧和 镨的含量; $Ce_{\kappa_{\#}}$ 、 $La_{\kappa_{\pi}}$ 和 $Pr_{\kappa_{\#}}$ 为 PAAS 标准 物质中稀土元素铈、镧和镨含量。

自生铀(authigenic uranium, 简称 U_{auth})含量计算公 式为^[37]

$$U_{auth} = U - Th/3, \tag{7}$$

式中,U为样品中微量元素铀的含量;Th为样品中微量元素钍的含量。

3 结果

3.1 AMS¹⁴C 测年

通过 AMS¹⁴C 测年结果知, DYBB27 和 DYB228 柱状沉积物 29~30 cm 处校正后,底部年龄分别为距今 140 cal a 和距今 67.5 cal a,根据计算可知,两个柱状沉 积物的沉积速率分别约为 0.214 cm/a 和 0.444 cm/a。

3.2 沉积物粒度、总有机碳、总氮及其同位素垂向变化

DYBB27 柱状沉积物中黏土组分(粒度: $0 \sim 4 \mu m$) 的含量范围为 16.79% $\sim 26.24\%$, 平均含量为 20.81%; 粉砂组分(粒度: $4 \sim 63 \mu m$)的含量范围为 $65.34\% \sim$ 77.04%, 平均含量为 73.08%; 砂组分(粒度: $63 \sim 2000 \mu m$) 的含量在 $0 \sim 11.23\%$ 之间, 平均含量为 6.11%; 平均粒 径值集中在 $6.44 \Phi \sim 7.26 \Phi$ 之间($\Phi = -\log_2 d$, d为颗粒 直径, 单位: mm)。DYB228 柱状沉积物中黏土组分 的含量范围为 16.95% $\sim 25.77\%$, 平均含量为 21.96%; 粉砂组分的含量范围为 63.65% $\sim 77.03\%$, 平均含量 为 69.77%; 砂组分的含量变化较大, 在 4.16%~15.13% 之间, 平均含量为 8.27%; 平均粒径值集中在 6.31 Ф~ 6.92 Ф之间。两个柱状沉积物平均粒径波动情况相 似, 在表层 0~15 cm 波动较小, 在 15~30 cm 波动较 大, 且都是粉砂的含量占优势, 黏土次之, 砂最低, 具 体如图 2 所示。根据谢帕德分类方法^[38], DYBB27 柱 状沉积物 30 个样品中,主要为黏土质粉砂(21 个)和 粉砂(9 个)这两种类型,粉砂集中在 15~26 cm 之间; DYB228 主要为黏土质粉砂(27 个)和粉砂(3 个),粉 砂出现在 20~24 cm 之间。

Fig. 2 Vertical characteristics of component content, average particle size, TOC content, TN content, δ^{13} C value, δ^{15} N value and f_m in the columnar sediments of DYBB27 (a) and DYB228 (b)

DYBB27 和 DYB228 柱状沉积物 TOC 含量、TN 含量、δ¹³C 值、δ¹⁵N 值、海洋自生有机质组分占比(f_m) 的垂向特征如图 2 所示,变化趋势相似。DYBB27 柱 状沉积物中 TOC 含量的变化范围为 0.39%~1.35%, 平均值为 1.04%; TN 含量的变化范围为 0.06%~0.18%, 平均值为 0.15%; δ¹³C 值的变化范围为-30.08‰~ -21.14‰,平均值为-22.05‰,在5 cm 处出现异常低 值-30.08‰; δ¹⁵N 值的变化范围为-2.90‰~5.36‰, 平均值为1.35‰; 根据δ¹³C 值计算沉积物中海洋自生 有机质组分来源的占比,变化范围为0~83.74%, 平 均值为72.24%。DYB228 柱状沉积物中 TOC 含量的 变化范围为0.35%~1.45%, 平均值为1.07%; TN 含量 的变化范围为0.06%~0.19%, 平均值为0.14%; δ¹³C 值 的变化范围为-23.23‰~-20.11‰, 平均值为-21.66‰; δ¹⁵N值的变化范围为-0.71‰~6.04‰,平均值为2.62‰; 根据δ¹³C值计算沉积物中海洋自生有机质组分来源的占比,变化范围为53.93%~98.40%,平均值为76.31%。

3.3 RSE 垂向变化

DYBB27 柱状沉积物 U/(Al×10³)、V/(Al×10⁴)、Cr/ (Al×10⁴)、Ni/(Al×10⁴)、Co/(Al×10⁴)、Cu/(Al×10⁴)、 Fe/(Al×10³)、Mn/(Al×10)的变化范围分别为 3.27~4.55、 15.52~16.78、10.01~10.93、5.83~7.27、1.66~2.65、 4.00~4.55、4.80~5.67、6.53~122.94; DYB228 柱状沉 积物 U/(Al×10³)、V/(Al×10⁴)、Cr/(Al×10⁴)、Ni/(Al× 10⁴)、Co/(Al×10⁴)、Cu/(Al×10⁴)、Fe/(Al×10³)、Mn/(Al× 10)的变化范围分别为 3.16~4.87、15.91~17.18、9.92~ 10.45、6.47~8.49、1.87~3.41、4.47~5.84、4.88~ 5.54、7.35~95.69。其垂向变化特征如图 3 所示。

图 3 DYBB27 和 DYB228 柱状沉积物中 RSE/Al 比值的垂向特征 Fig. 3 Vertical characteristics of RSE/Al ratio in the columnar sediments of DYBB27 and DYB228

DYBB27 柱状沉积物 U、V、Cr、Ni、Co、Cu、Fe 和 Mn 的富集系数变化范围分别为 1.06~1.47、1.03~ 1.12、0.91~0.99、1.06~1.32、0.72~1.15、0.80~0.91、 0.96~1.13、0.77~14.46; DYB228 柱状沉积物 U、V、 Cr、Ni、Co、Cu、Fe和Mn的富集系数变化范围分别 为1.02~1.57、1.06~1.15、0.90~0.95、1.18~1.54、0.81~ 1.48、0.89~1.17、0.98~1.11、0.87~11.26。其垂向变 化特征如图4所示。

Fig. 4 Vertical characteristics of RSE_{EF} in the columnar sediments of DYBB27 and DYB228

整体而言,两个站位的RSE/Al和RSE_{EF}的变化趋势相似,除了Cr,其他RSE均显示有富集现象;最显

著的特征是底部 25~30 cm 处均出现锰含量峰值,约 为表层含量的 14倍,两个柱状沉积物的富集系数分 別为 14.46 和 11.26,属中-强烈富集,在相对应的层位,其他 RSE/AI 和 RSE_{IF}值有一定的增高。

3.4 氧化还原指标垂向变化

DYBB27 和 DYB228 柱状沉积物中氧化还原指标 变化如图 5 所示,两者垂向变化趋势相似。DYBB27

柱状沉积物中 δ Ce(PAAS标准化)的变化范围为 0.92~0.98, U_{auth}的变化范围为-1.92~-0.79, U/Th的 变化范围为 0.19~0.27, V/(V+Ni) 的变化范围为 0.69~0.73, Ni/Co 的变化范围为 2.41~3.50, V/Cr 的变化范围 1.49~1.61。

DYB228 柱状沉积物中 δCe 的变化范围为 0.92~ 0.97, U_{aut} 的变化范围为-1.79~-0.51, U/Th 的变化范 围为 0.19~0.29, V/(V+Ni) 的变化范围为 0.66~0.72, Ni/Co 的变化范围为 2.49~3.61, V/Cr 的变化范围 1.56~1.68。

4 讨论

4.1 AMS¹⁴C 测年可靠性分析

为验证本文测年结果的可靠性,将测年结果与冲 绳海槽中南部周边已发表的AMS¹⁴C测年钻孔数据进 行对比,结果如表1所示。DYBB27和DYB228柱状 样29~30 cm处距今年龄分别为140 cal a和67.5 cal a, 与其他孔同深度对比发现,本研究获得的年龄比周边 孔小得多。研究区域周边钻孔在相同层位年龄数据 相近,底部距今年龄平均值在1000 cal a以上,这表明 本文的测年数据可能并不准确,因此,本测年结果对 于DYBB27和DYB228这两个柱状样的年代框架构 建参考意义不大。而通过3.3节和3.4节图3至图5 两个站位的RSE含量和比值的垂向变化趋势较为一 致推测,DYBB27和DYB228柱状沉积物为同时期的 沉积物,沉积环境相似,在后续论述中一并讨论。

4.2 沉积物粒度对 RSE 富集影响

DYBB27和DYB228两个柱状样整体上以细颗粒 沉积物为主,指示了相对低能的沉积环境;以往物源 研究表明,现今冲绳海槽细颗粒沉积物以台湾河流沉 积物为主,部分来自中国大陆^[46-48]。沉积物中元素的 含量因吸附作用,受粒径组分和大小的变化而呈现出 有规律的变化,即元素含量受"粒控效应"影响^[49]。这 种现象在两柱状样沉积物 RSE 含量中也有体现,可 能原因是随着粒径变细,沉积物中的黏土矿物组分、 有机质组分、Fe-Mn(氢)氧化物组分增加,对 RSE 的 吸附作用增强, RSE 含量也随之增加^[50]。

将 DYBB27 和 DYB228 柱状沉积物 RSE/AI 比值 与沉积物粒度组分进行相关性分析,分析结果如表 2 所示。结果发现,在 DYBB27 和 DYB228 柱状沉积物 中, V/AI 比值与粒径组分均无明显相关性, Co/AI 比 值均与粉砂组分呈现显著正相关,其他 RSE/AI 比值 在两个样品中存在明显差异。DYBB27 沉积物中, U/AI 比值与砂组分呈现显著正相关, Fe/AI 比值与粉 砂组分呈现显著正相关, Fe/AI 比值与粉 砂组分呈现显著正相关,其他 RSE/AI 比值(Cr/AI、 Ni/AI、Cu/AI 和 Mn/AI 比值)与粒径组分无明显相关 性; DYB228 沉积物中, U/AI 比值与黏土组分呈现显

Table 1	Table 1 Comparison of AMS ^{+*} C dating data of sediments from different drillings in the South Central Okinawa Trough							
样品编号	纬度	经度	水深/m	深度/cm	距今平均校正年龄/(cal a)	参考文献		
DYBB27	26.196 9°N	125.233 8°E	1 323	29~30	140	本研究		
DYB228	26.866 3°N	125.955 0°E	1 277	29~30	67.5	本研究		
MD012404	26.656 7°N	125.820 8°E	1 397	14.5	749	文献[39]		
OKT-3	26.018 0°N	125.282 0°E	1 792	28	1 090	文献[40]		
OKI-151	26.110 0°N	125.520 0°E	2 013	30	1 135	文献[41]		
A7	27.817 2°N	126.968 6°E	1 264	32~36	2 690	文献[42]		
C14	28.659 7°N	127.320 0°E	1 100	35~37.5	673	文献[43]		
Oki02	26.073 6°N	125.200 7°E	1 612	52~54	2 891	文献[44]		
OKT12-2	26.050 0°N	125.340 0°E	1 924.53	57	3 147.5	文献[45]		

表1 冲绳海槽中南部不同钻孔沉积物的 AMS¹⁴C 测年数据对比

-11.00

表 2 DYBB27 和 DYB228 柱状沉积物 RSE/AI 比值与粒径的相关性分析

Table 2 Correlation analysis of RSE/Al ratio and particle size in the columnar sediments of DYBB27 and DYB228

样品	指标	U/Al	V/Al	Cr/Al	Ni/Al	Co/Al	Cu/Al	Fe/Al	Mn/Al
DYBB27	平均粒径	-0.177	-0.283	0.067	-0.092	0.285	-0.114	0.140	-0.079
	砂粒径	0.442*	0.281	-0.037	0.036	-0.393*	-0.005	-0.384*	-0.018
	粉砂粒径	-0.607**	-0.196	-0.053	0.034	0.369*	0.198	0.539**	0.129
	黏土粒径	0.175	-0.125	0.114	-0.089	0.058	-0.240	-0.166	-0.137
DYB228	平均粒径	0.554**	-0.198	-0.416*	-0.245	-0.069	-0.216	-0.335	-0.056
	砂粒径	-0.100	0.128	0.016	-0.203	-0.240	-0.193	0.034	-0.259
	粉粒粒径	-0.440*	0.042	0.424*	0.517**	0.375*	0.508**	0.340	0.390*
	黏土粒径	0.748**	-0.197	-0.635**	-0.538**	-0.291	-0.027	-0.532**	-0.293

注:**表示在0.01级别(双尾),相关性显著;*表示在0.05级别(双尾),相关性显著。

著正相关, Cr/Al、Ni/Al、Cu/Al 和 Mn/Al 比值与粉砂 组分呈现显著正相关,而 Fe/Al 比值与黏土组分呈现 显著负相关。其中, RSE/Al比值与粉砂组分存在正相 关性的 r 值在 0.369~0.539之间(图 6), 相关性均较 弱。整体而言,沉积物中粉砂组分(4~63 μm)对 RSE 富集存在一定影响,但"粒控效应"对 RSE 富集影 响不大。有研究发现,冲绳海槽南部陆架和陆坡区多 数元素的含量变化范围较大,向海槽方向随沉积物粒 径变细,海槽区元素含量相对变化较小,相对稳定⁵¹。 说明"粒控效应"的影响在粒度参数变化大的沉积物 中会更为明显,本文中所选择样品本身粒度参数变化 不大,反映沉积环境相对稳定,说明"粒控效应"对 RSE 含量影响不明显。

4.3 海水表层生产力对 RSE 富集制约

除了沉积物粒度影响外,冲绳海槽由于陆源输入

导致的海水表层生产力变化也会影响沉积物中RSE 的富集[25,52]。DYBB27和DYB228柱状沉积物属于近 代沉积,东亚冬季风处于稳定且较弱时期[53-56],海平 面跟现今差异很小^[57],黑潮主轴稳定在冲绳海槽^[39]。 沉积物中 TOC 的埋藏速率在很大程度上受到古海洋 生产力的控制。将 DYBB27 和 DYB228 柱状沉积物 中的 RSE/Al 比值与 TOC 含量和生源钡(Babie)含量这 两个生产力指标进行相关性分析,结果如表3所示。 有研究提出,当沉积物中TOC达到一定含量时(>2%), 由于吸附作用影响, TOC 与 RSE 含量存在明显正相关 性^[3]。本研究中,除了 DYB228 柱状沉积物中的 V 和 Cu存在弱正相关性, r 值分别为 0.501 和 0.447, 其他 RSE/AI比值与 TOC 含量没有明显的正相关性,表明 有机质吸附或络合作用不是控制研究样品 RSE 变化 的主要因素;且 Ba_{bio}和 TOC 含量几乎没有相关性

图 6 DYBB27(a)和 DYB228(b)柱状沉积物中粉砂含量和 RSE/Al 比值的相关性 Fig. 6 Correlation between silt content and RSE/Al ratios in the columnar sediments of DYBB27 (a) and DYB228 (b) 纵坐标 a 值除了 Mn/Al 比值为 1, 其他 RSE/Al 比值为 4

The value of ordinate *a* is 1 (Mn/Al), and the other RSE/Al are 4

(图 7a),说明生产力的变化与 TOC 关系不大,这可能 与冲绳海槽有机碳沉降和埋藏过程中的分解作用有 关,表层水体中形成的有机碳只有极少部分被保存在 海底沉积物中^[58-59]。TOC含量主要用于评价近岸、上升 流等比较富营养环境的生产力水平变化,开阔外海 TOC 降解氧化程度高,其含量难以反映生产力的变化^[60-61]。

表 3 DYBB27 和 DYB228 柱状沉积物 RSE/Al 比值与 TOC 和 Babio 的相关性分析 Table 3 Correlation analysis of RSE/Al ratios with TOC and Babio in the columnar sediments of DYBB27 and DYB228

样品	指标	Ba _{bio} 含量/10 ⁻⁶	U/Al	V/Al	Cr/Al	Ni/Al	Co/Al	Cu/Al
DYBB27	TOC含量/%	0.147	-0.093	-0.014	-0.053	0.100	0.182	-0.036
	Ba _{bio} 含量/10 ⁻⁶	1	-0.017	0.686**	0387*	0.844**	0.749**	0.248
DYB228	TOC含量/%	0.206	-0.427*	0.501**	0.195	0.039	0.360	0.447*
	Ba _{bio} 含量/10 ⁻⁶	1	-0.282	-0.312	0.068	0.759**	0.858**	0.383*

注:**表示在0.01级别(双尾),相关性显著;*表示在0.05级别(双尾),相关性显著。

海洋沉积物中 Babio 堆积速率或含量是指示古海 洋初级生产力的良好指标^[62-64]。尤其在弱氧化和氧化 环境中, Babio 富集程度与古生产力有一定的正相关性^[65]。 本研究中, RSE/Al 比值和 Ba_{bio} 含量相关性显示, Ba_{bio} 含量与 Ni/Al 和 Co/Al 在 DYBB27 和 DYB228 中均存 在显著的正相关关系, *r* 值在 0.749~0.858 之间(图 7b);

其他 RSE/Al 比值与 Ba_{bio}含量在两个站位存在差异, V/Al 和 Cr/Al比值与 Ba_{bio}含量在 DYBB27 沉积物中呈 显著正相关关系, Cu/Al 比值与 Ba_{bio}含量在 DYB228 沉积物中呈显著正相关关系。表明冲绳海槽中南部 沉积物中 RSE 含量受生产力变化的影响,生产力提 高导致大量有机质降解,造成底层水体的低氧。对埃 及东北部海相黑色页岩床中的 RSE 研究有类似的发 现,特提斯洋南部存在高产力的上升流导致生产力的 提高、有机质再矿化,成为 RSE 富集的主要因素^[20]。 此外,阿拉伯海东南部的研究也发现生产力变化是控 制南部浅水区氧化还原条件的主导因素,高生产力对 应强烈的低氧条件,使得 RSE 富集^[26]。

4.4 早期成岩作用对 RSE 富集影响

海洋沉积物在堆积埋藏至海底较浅深度的过程中,在沉积颗粒、间隙水以及沉积环境水介质之间发生的一系列物理、化学及生物地球作用的总和即为早期成岩作用^[66-67]。有机质的氧化降解是其主要的驱动力^[66-67]。在早期成岩作用中,Fe-Mn氧化还原循环对于RSE含量的影响非常重要。沉积物中的Fe和Mn元素受氧化还原条件变化的影响较大^[33]。氧化还原敏感元素 Mn可作为底水氧化还原环境变化的指标。在弱氧化或缺氧条件下, Mn被还原成 Mn²⁺, 从

沉积物中浸出;在富氧底水中, Mn 又以 MnO₂ 的形式 沉淀下来^[68]。沉积物中 Fe(氢)氧化物作为有机质氧 化的氧化剂,在弱氧化或缺氧条件下,被还原为 Fe²⁺, Fe²⁺不稳定,易与其他化学物质 HCO³⁺、HS⁻等反应形 成沉淀 FeCO₃或 FeS_(x),从而保存在沉积物中^[69]。Fe-Mn氧化还原循环过程可以影响微量元素的迁移和 扩散^[18,70]。在氧化沉积环境中, RSE 会被吸附或捕获 到 Fe-Mn氧化物表面并保存于沉积物中,从而形成 RSE 与 Fe、Mn 的正相关关系^[33,71-72]。而当沉积环境 处于还原条件时,伴随 Fe-Mn氧化物的还原解析, RSE 又被重新释放,"清扫"回间隙水中^[73]。东海内 陆架季节性低氧海区沉积柱中发现 RSE/Al 比值与 Fe/Al 和 Mn/Al 比值具有显著的相关性,指示氧化沉 积环境^[74]。

通过 DYBB27 和 DYB228 柱状沉积物中不同元 素相关性分析(表4)发现, RSE/Al 与 Fe/Al 比值几乎 没有正相关性, 仅在 DYB228 柱状沉积物中与 V/Al 和 Cr/Al 表现出正相关性, r 值分别为 0.391 和 0.442, 表明 Fe(氢)氧化物对 RSE 的吸附或捕获作用的影响 很小; RSE/Al(V/Al、Ni/Al、Co/Al 和 Cu/Al) 比值与 Mn/Al 比值的正相关性较好(图 8), r 值在 0.529~0.972 之间, 其中 Ni/Al 和 Co/Al 在两个站位均具有较高的

表 4 DYBB27 和 DYB228 柱状沉积物 RSE/AI 比值与 Fe/AI 和 Mn/AI 比值的相关性分析

Table 4	Correlation analysis of RSE/Al ratios	with Fe/Al and Mn/Al ratios in the	e columnar sediments of DYBB27 and DYB228
---------	---------------------------------------	------------------------------------	---

站位	指标	U/Al	V/Al	Cr/Al	Ni/Al	Co/Al	Cu/Al
DYBB27	Fe/Al	-0.677**	-0.181	-0.006	-0.126	0.032	0.053
	Mn/Al	-0.248	0.666**	0.274	0.972**	0.821**	0.361
DYB228	Fe/Al	-0.672**	0.391*	0.442*	0.153	-0.139	0.299
	Mn/Al	-0.333	-0.229	0.089	0.896**	0.901**	0.529**

注:**表示在0.01级别(双尾),相关性显著;*表示在0.05级别(双尾),相关性显著。

相关性, r 值在 0.821~0.972 之间。上层水体溶解态 尤其是有机质的 RSE 可能是通过与沉积物中 Mn(氢)氧化物被捕获或 的 U 可以扩散 吸附 从 而在海洋沉积物中富集 指示整体的氧化沉 状态且有机质?

RSE 可能是通过与沉积物中 Mn(氢)氧化物被捕获或 吸附,从而在海洋沉积物中富集,指示整体的氧化沉 积环境。王家凯等^[7]在南极罗斯海柱状岩心及表层 样中同样发现了 Ni、Co 和 Mn 同时富集,推测钻孔沉 积期为氧化环境,RSE 富集是由于锰(氢)氧化物对其 捕获或吸附所致。

研究发现 DYBB27 和 DYB228 柱状沉积物中, Babio 含量和 MnO/Al₂O₃ 比值都具有明显的正相关性(图 9), r 值分别为 0.830 和 0.839, 说明沉积物中 Mn 含量与 生产力变化密切相关。沉积物间隙水中 Fe 和 Mn 主 要以扩散的形式在生物扰动层中与水体发生交换,生 产力的变化能调节水体中溶解氧(DO)的含量,高 Fe、Mn 通量指示高生产力的海洋氧化还原环境^[76]。 生产力的变化会改变水体溶解氧的情况,通过影响间 隙水中的 Mn 通量,来影响进入沉积物中的 Mn 含量, 再通过 Mn(氢)氧化物的吸附或还原解析作用来进一 步影响 RSE 在沉积物中的富集程度。且 Ni、Cu 和 Zn 作为浮游生物的微量营养元素被浮游生物吸收利 用,以有机质为载体进入沉积物中^[33]。

图 9 Ba_{bio}含量和 MnO/Al₂O₃比值的相关性 Fig. 9 Correlations of Ba_{bio} content and MnO/Al₂O₃ ratio

一般情况下,水体中U⁶⁺发生还原作用,变成U⁴⁺ 富集到沉淀中^[31]。此时氧化还原电势使得Fe³⁺还原成 易溶的Fe²⁺,而Fe²⁺不稳定易被氧化进入沉淀中,因 此,Fe与U多呈现出正相关关系^[32,77]。然而,本研究 发现,两处沉积物中Fe/Al比值与U/Al比值均呈现负 相关关系,r值分别为-0.677和-0.672(表4)。这与常 见的研究结果不相符,可能与以下几个原因有关:(1) 间隙水中U和Fe含量呈指数负相关关系,这可能使 得进入沉积物中的量受限于间隙水中的量而也呈现 出负相关关系^[69];(2)U对重新氧化作用的响应敏感, 容易发生二次氧化^[78];(3)U富集受沉积速率的影响, 尤其是有机质的沉积速率。当沉积速率较低时,更多的U可以扩散到沉积物中并累积;当深水处于氧化状态且有机质沉降速率较高时,U氧化还原界面可以升高到沉积物-水界面(Sediment Water Interface, SWI)的位置,加速沉积物堆积导致的沉积物中自生铀发生稀释,从而导致该区域的U含量在沉淀中减少,不能反映真实的氧化还原环境^[79]。关于U异常的具体原因还有待进一步的研究。

4.5 RSE 变化特征对沉积环境的指示

研究发现, RSE 易受环境中氧气浓度影响而发生 变价,在氧化海水中多以溶解态离子存在,在还原环 境中则以低价氧化物、硫化物或有机络合物等形式 富集在沉积物中[80-81]。沉积物埋藏之后, RSE 几乎不 发生迁移,保存了沉积时的组成和含量,所以可以通 过计算它们在沉积物或沉积岩中的富集系数来反映 出沉积时期的水体氧化还原状态[82-83]。研究发现,除 了 Cr 亏损和 Mn 在沉积物底部 5 cm 强烈富集,其他 RSE都有不同程度的轻微富集(图 4),指示为氧化-弱氧化环境。随着研究的深入,除了单一的RSE含 量对环境的指示研究,各学者结合多个 RSE,通过综 合已有数据进行对比分析,得出一些可以运用的经验。 例如, δCe用于衡量 Ce相对于 La 和 Pr的分异程度, δCe 大于1为正异常,小于1为负异常。变价元素 Ce 有+3和+4两种价态,其中Ce3+易溶于水,而Ce4+易水 解沉淀。在弱氧化或缺氧条件下,以Ce3+形式在水体 中稳定存在, Ce 异常较弱或不存在; 在氧化条件下, Ce3+容易被氧化成溶解度较小的 Ce4+, 与铁锰铝(氢) 氧化物发生共沉淀,此时 δCe<1,海水出现 Ce 负异常 现象^[84-86]。DYBB27 和 DYB228 柱状沉积物中 δCe 值 变化范围为 0.92~0.98(图 5), δCe<1, 有轻微的 Ce 负 异常,指示氧化--弱氧化环境。

研究发现, 沉积物中自生铀(U_{auh})和U/Th 是判断 古海洋氧化还原变化的有效指标。U在氧化条件下 以可溶的U⁶⁺形式存在, 在还原环境下以不溶的U⁴⁺富 集于沉积物中; Th 对氧化还原条件不敏感, 以不溶的 Th⁴⁺形式存在, 因此U/Th 值在氧化条件下偏低, 此时 U/Th<0.75, 在缺氧环境中偏高, U/Th>1.25^[6,27]。Wignall 和 Myers^[87] 通过测量碎屑沉积物中U和Th含量之间 的关系, 利用公式U_{auh}=U-Th/3 计算自生铀, 认为U_{auh} 小于 5×10⁻⁶ 代表氧化环境, 大于 12×10⁻⁶ 代表缺氧环 境, 在这之间的值代表弱氧化环境。DYBB27 和 DYB228 柱状沉积物中U_{auh}变化范围为-1.92~-0.51 (图 5), 都出现异常负值, 可能原因具体见 4.4 节。因 此, 本研究中U/Th 比值对氧化还原沉积环境不具有 指示意义,不作讨论。

V在氧化水体中以钒酸根HVO4-和H2VO4的形式 存在,在弱还原条件下,V5+被还原为V4+并形成钒酰 基 VO²⁺, 易与有机金属配位体螯合形成有机络合物或 水化物,在缺氧沉积物中富集;Cr在氧化水体中主要 以铬酸阴离子CrO₄⁻的形式存在,在缺氧条件下,Cr⁶⁺被 还原到 Cr³⁺, 可与腐殖酸/富里酸形成复合物, 或者吸 附于 Fe-Mn(氢)氧化物,从而被转移到沉积物中; Ni 在氧化环境中主要以溶解的碳酸盐形式(NiCO₃) 存在或者吸附于腐殖酸/富里酸上,在缺氧环境中, Ni 与有机质形成有机络合物可以加速 Ni 在沉积物中 的富集,硫化环境下 Ni 以难溶的硫化物形式进入黄 铁矿中;相反 Co 在还原条件下从沉积物中溶解重新 进入海水中,使 Ni/Co 比值增大[33,88]。水体氧气含量 降低时, V、Cr 和 Ni 都是从氧化环境下的溶解态转变 为易在还原环境下沉积物中富集的难溶物,因此 V/Cr、Ni/Co和V/(V+Ni)比值可作为判别古海洋氧化 还原环境的有效参数。Jones 和 Manning^[89]、Tyson 和 Pearson^[90]根据在挪威北海和英国陆上地层获取的 193个样品进行 RSE 含量分析,得出以下经验结论: 处于氧化环境的 Kimmeridge黏土层和 Heather 地层以 及浅部 Draupne 地层中, V/Cr<2.00、Ni/Co<5.00, 指示 富氧环境:大部分地堑深部的 Draupne 地层沉积形成 于永久缺氧的底水环境,此时 V/Cr>4.25、Ni/Co>7.00, 指示缺氧环境;值在这两者之间则指示弱氧化--弱还 原环境。DYBB27和DYB228柱状沉积物中V/Cr的 变化范围为1.49~1.68, Ni/Co的变化范围为2.41~3.61, 对比上述结论,研究样品 V/Cr 和 Ni/Co 比值均指示氧 化环境(图 10)。Hatch 和 Leventhal^[91]、杨季华等^[92]通 过对北美黑色页岩的研究得出 V/(V+Ni) 比值能有效 反映沉积环境的氧化还原条件,认为 V/(V+Ni)>0.77 指示相对还原的沉积环境, V/(V+Ni)<0.6指示相对氧 化的沉积环境,介于二者之间则指示弱氧化--弱还原 的沉积环境。DYBB27和 DYB228 柱状沉积物中 V/(V+Ni)比值的变化范围为 0.66~0.73, 据此推测 V/(V+Ni)比值指示弱氧化-弱还原环境;且研究发现, 在 DYBB27 和 DYB228 柱状沉积物中, V/(V+Ni) 与 Mn/(Al×10) 比值均具有很明显的负相关性, r 值分别 为-0.975和-0.912(图 11),表明 V/(V+Ni)比值可能 与 Mn 含量所指示的海水表层生产力变化密切相关, 而 Mn(氢)氧化物的吸附或捕获作用增强可能导致该 值偏大。

根据以上 RSE 比值分析可知,尽管大多数氧化还 原敏感元素在还原条件下在海洋沉积物中富集,可以

其他数据引自文献 [89]

Other data are quoted from reference [89]

值得注意的是,在浅表层沉积物中,经常观察到 Mn的峰值,本研究数据也显示在柱状样 25~30 cm 处出现 Mn的峰值(图 3)。Mn 在氧化环境下, Mn(氢)

氧化物参与有机质的降解过程被还原分解, Mn²⁺被释 放出来,固相中的 Mn 含量迅速减少。在上部水体处 于还原条件时, Mn²⁺可以扩散进入上覆水中, 或者在 向上扩散过程中被再次氧化而进入沉积物,在沉积物 表层出现 Mn 的高峰分布^[16,69]。深层的 Mn 由于还原 作用(缺氧环境)被释放出来,之后向上扩散,遇氧化 间隙水再次被氧化富集在沉积之中,从而形成 Mn 的 次高峰分布四。白海坎达拉克沙湾底部沉积物中也 同样出现 Mn 含量异常高, 研究认为是成岩作用的影 响:间隙水中的 Mn²⁺含量极高(>500 µmol/L),导致其 进入底水,与氧气接触氧化,并合成二氧化锰或氢氧 化物,使沉积物表层富集 Mn。本研究活跃的成岩氧 化还原过程终止于 25~30 cm 深度, 表层沉积物积累 的 Mn 亚稳态残留物易于扩散, 使得深层富锰^[95]。在 Mn峰出现处,发现Co、Ni、Cu和V的含量也相对增 多,同样指示了底部水体的氧化--弱氧化环境,与西赤 道太平洋的翁通爪哇海台研究相似¹⁹⁶。本研究认为, Mn 在浅表层沉积物中强烈富集,可能与海水生产力 提高有关,生产力的变化会改变水体溶解氧的情况, 通过影响间隙水中的 Mn 通量, 来影响进入沉积物 中的 Mn 含量^[76]。且生产力的提高会导致有机质通

量增加,有机质降解耗氧,底部水体进一步发生缺氧

5 结论

本文基于沉积物粒度、总有机碳、总氮及其同位 素和氧化还原敏感元素等指标,通过相关性方法重点 分析冲绳海槽中南部柱状沉积物中 RSE 的赋存机理 与环境指示意义,主要结论如下:

(1)冲绳海槽中南部 DYBB27 和 DYB228 两个柱 状样以细颗粒为主, 沉积环境相对稳定,"粒控效应" 对 RSE 富集的影响较小; 有机质吸附或络合作用不 是 RSE 变化的主要因素。RSE 含量受 Fe(氢)氧化物 影响较小, 而与 Mn(氢)氧化物的吸附或捕获作用密 切相关。

(2)海水表层生产力变化影响了沉积环境的氧化 还原条件,使得 Mn(氢)氧化物的吸附或捕获作用增 强,进而导致了 RSE 富集,生产力的提高使得大量有 机质降解,造成底层水体的低氧。

(3) DYBB27 和 DYB228 两个柱状样的沉积环境 处于氧化--弱氧化环境之间。沉积物中 Mn 与 RSE 同 时富集,指示整体的沉积环境为氧化环境(0~25 cm)。 下部沉积物(25~30 cm)处锰峰的出现指示此处为氧 化还原界面, Mn 在缺氧环境中发生还原作用,以 Mn²⁺形式向上扩散,遇含氧间隙水发生氧化作用形成 MnO₂,指示弱氧化环境。

参考文献:

现象。

- [1] 林治家, 陈多福, 刘芊. 海相沉积氧化还原环境的地球化学识别指标[J]. 矿物岩石地球化学通报, 2008, 27(1): 72-80.
 Lin Zhijia, Chen Duofu, Liu Qian. Geochemical indices for redox conditions of marine sediments[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2008, 27(1): 72-80.
- [2] 张明亮, 郭伟, 沈俊, 等. 古海洋氧化还原地球化学指标研究新进展[J]. 地质科技情报, 2017, 36(4): 95-106.
 Zhang Mingliang, Guo Wei, Shen Jun, et al. New progress on geochemical indicators of ancient oceanic redox condition[J]. Geological Science and Technology Information, 2017, 36(4): 95-106.
- [3] Algeo T J, Owens J D, Morford J L, et al. New developments in geochemical proxies for paleoceanographic research[J]. Geochimica et Cosmochimica Acta, 2020, 287: 1–7.
- [4] Isozaki Y. Permo-triassic boundary superanoxia and stratified superocean: records from lost deep sea[J]. Science, 1997, 276(5310): 235-238.
- [5] Pattan J N, Pearce N J G. Bottom water oxygenation history in southeastern Arabian Sea during the past 140 ka: results from redox-sensitive elements[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280(3/4): 396–405.
- [6] 解兴伟,袁华茂,宋金明,等.海洋沉积物中氧化还原敏感元素对水体环境缺氧状况的指示作用[J]. 地质论评, 2019, 65(3): 671-688. Xie Xingwei, Yuan Huamao, Song Jinming, et al. Indication of redox sensitive elements in marine sediments on anoxic condition of water environment[J]. Geological Review, 2019, 65(3): 671-688.
- [7] Morford J L, Emerson S. The geochemistry of redox sensitive trace metals in sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63(11/12): 1735–1750.
- [8] Wakeham S G. Organic biogeochemistry in the oxygen-deficient ocean: a review[J]. Organic Geochemistry, 2020, 149: 104096.
- [9] 吴伊婧, 范代读, 印萍, 等. 近岸底层水体低氧沉积记录研究进展[J]. 地球科学进展, 2016, 31(6): 567-580.
- Wu Yijing, Fan Daidu, Yin Ping, et al. Research advances in sedimentary records of coastal bottom-water hypoxia[J]. Advances in Earth Science, 2016, 31(6): 567–580.
- [10] 赵亚青,周亮,赵宁,等.近三百年来长江口泥质区沉积环境变化及与低氧关系的初步分析[J]. 海洋通报, 2021, 40(1): 70-83.
 Zhao Yaqing, Zhou Liang, Zhao Ning, et al. The response of sedimentary records in the mud area of the Changjiang Estuary to hypoxia in

the last 300 years[J]. Marine Science Bulletin, 2021, 40(1): 70-83.

- [11] Cartapanis O, Tachikawa K, Bard E. Northeastern Pacific oxygen minimum zone variability over the past 70 kyr: impact of biological production and oceanic ventilation[J]. Paleoceanography and Paleoclimatology, 2011, 26(4): PA4208.
- [12] Diaz R J, Rosenberg R. Spreading dead zones and consequences for marine ecosystems[J]. Science, 2008, 321(5891): 926–929.
- [13] Rabalais N N, Díaz R J, Levin L A, et al. Dynamics and distribution of natural and human-caused hypoxia[J]. Biogeosciences, 2010, 7(2): 585–619.
- [14] 韦刚健, 李献华, 刘颖, 等. 沉积物成岩蚀变过程中的Mn、Cd和Mo元素活动特征: 以ODP 1148站钻孔沉积物记录为例[J]. 地球化学, 2005, 34(2): 129–135.

Wei Gangjian, Li Xianhua, Liu Ying, et al. Transfer patterns of Mn, Cd and Mo in sediments during early diagenesis: evidences from sediment cores at ODP site 1148[J]. Geochimica, 2005, 34(2): 129–135.

- [15] Adegoke A K, Abdullah W H, Hakimi M H, et al. Trace elements geochemistry of Kerogen in Upper Cretaceous sediments, Chad (Bornu) Basin, northeastern Nigeria: origin and paleo-redox conditions[J]. Journal of African Earth Sciences, 2014, 100: 675–683.
- [16] Li Li, Dang D H, Wang Xiaojing, et al. Atypical diagenesis and geochemistry of redox-sensitive elements in hydrothermal sediments of the southern Okinawa Trough[J]. Frontiers in Marine Science, 2021, 8: 722599.
- [17] Crusius J, Calvert S, Pedersen T, et al. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition[J]. Earth and Planetary Science Letters, 1996, 145(1/4): 65–78.
- [18] Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3/4): 289–318.
- [19] Pi Daohui, Jiang Shaoyong, Luo Li, et al. Depositional environments for stratiform witherite deposits in the Lower Cambrian black shale sequence of the Yangtze Platform, southern Qinling Region, SW China: evidence from redox-sensitive trace element geochemistry[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 398: 125–131.
- [20] Baioumy H, Lehmann B. Anomalous enrichment of redox-sensitive trace elements in the marine black shales from the Duwi Formation, Egypt: evidence for the late Cretaceous Tethys anoxia[J]. Journal of African Earth Sciences, 2017, 133: 7–14.
- [21] Algeo T J, Tribovillard N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J]. Chemical Geology, 2009, 268(3/4): 211–225.
- [22] Tribovillard N, Algeo T J, Baudin F, et al. Analysis of marine environmental conditions based onmolybdenum-uranium covariation-applications to Mesozoic paleoceanography[J]. Chemical Geology, 2012, 324–325: 46–58.
- [23] Lyons T W, Anbar A D, Severmann S, et al. Tracking euxinia in the ancient ocean: a multiproxy perspective and proterozoic case study[J]. Annual Review of Earth and Planetary Sciences, 2009, 37(1): 507–534.
- [24] Dale A W, Meyers S R, Aguilera D R, et al. Controls on organic carbon and molybdenum accumulation in Cretaceous marine sediments from the Cenomanian-Turonian interval including oceanic anoxic event 2[J]. Chemical Geology, 2012, 324–325: 28–45.
- [25] Nameroff T J, Balistrieri L S, Murray J W. Suboxic trace metal geochemistry in the eastern tropical North Pacific[J]. Geochimica et Cosmochimica Acta, 2002, 66(7): 1139–1158.
- [26] Pattan J N, Parthiban G, Amonkar A. Productivity controls on the redox variation in the southeastern Arabian Sea sediments during the past 18 kyr[J]. Quaternary International, 2019, 523: 1–9.
- [27] Acharya S S, Panigrahi M K, Gupta A K, et al. Response of trace metal redox proxies in continental shelf environment: the eastern Arabian Sea scenario[J]. Continental Shelf Research, 2015, 106: 70–84.
- [28] 李铁刚,常凤鸣. 冲绳海槽古海洋学[M]. 北京: 海洋出版社, 2009: 259.
 Li Tiegang, Chang Fengming. Paleoceanography in the Okinawa Through[M]. Beijing: China Ocean Press, 2009: 259.
- [29] 邹亮, 窦衍光, 陈晓辉, 等. 冲绳海槽中南部不同环境表层沉积物质来源[J]. 海洋地质与第四纪地质, 2021, 41(1): 115-124. Zou Liang, Dou Yanguang, Chen Xiaohui, et al. Provenance analysis for surface sediments in different depositional environments of the middle-south Okinawa Trough[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 115-124.
- [30] 李铁刚,向荣,孙荣涛,等.冲绳海槽中南部18 ka以来的底栖有孔虫与底层水演化[J].中国科学(D辑):地球科学,2005,48(6): 805-814.

Li Tiegang, Xiang Rong, Sun Rongtao, et al. Benthic foraminifera and bottom water evolution in the middle-southern Okinawa Trough during the last 18 ka[J]. Science in China (Series D): Earth Sciences, 2005, 48(6): 805–814.

- [31] Dou Yanguang, Yang Shouye, Li Chao, et al. Deepwater redox changes in the southern Okinawa Trough since the last glacial maximum[J]. Progress in Oceanography, 2015, 135: 77–90.
- [32] 许淑梅. 长江口外缺氧区及其邻近海域氧化还原敏感性元素的分布规律及环境指示意义[D]. 青岛: 中国海洋大学, 2005. Xu Shumei. The distribution and environmental significance of redox sensitive elements in the hypoxia zone of the Changjiang Estuary and its contiguous area[D]. Qingdao: Ocean University of China, 2005.
- [33] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232(1/2): 12–32.
- [34] Dymond J, Suess E, Lyle M. Barium in deep-sea sediment: a geochemical proxy for paleoproductivity[J]. Paleoceanography and Paleoclimatology, 1992, 7(2): 163–181.

- [35] McLennan S M. Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes[J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1): 169–200.
- [36] 王中刚, 于学元, 赵振华. 稀土元素地球化学[M]. 北京: 科学出版社, 1989: 535. Wang Zhonggang, Yu Xueyuan, Zhao Zhenhua. Geochemistry of Rare Earth Elements[M]. Beijing: Science Press, 1989: 535.
- [37] Myers K J, Wignall P B. Understanding Jurassic organic-rich mudrocks-new concepts using gamma-ray spectrometry and palaeoecology: examples from the Kimmeridge clay of Dorset and the jet rock of yorkshire[M]//Leggett J K, Zuffa G G. Marine Clastic Sedimentology: Concepts and Case Studies. Dordrecht: Springer, 1987: 172–189.
- [38] Shepard F P. Nomenclature based on sand-silt-clay ratios[J]. Journal of Sedimentary Research, 1954, 24(3): 151–158.
- [39] Xu Fangjian, Dou Yanguang, Li Jun, et al. Low-latitude climate control on sea-surface temperatures recorded in the southern Okinawa Trough during the last 13.3 kyr[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 490: 210–217.
- [40] Zhao Jingtao, Li Jun, Cai Feng, et al. Sea surface temperature variation during the last deglaciation in the southern Okinawa Trough: modulation of high latitude teleconnections and the Kuroshio current[J]. Progress in Oceanography, 2015, 138: 238–248.
- [41] Chang Yuanpin, Wang W L, Yokoyama Y, et al. Millennial-scale planktic foraminifer faunal variability in the East China Sea during the past 40000 years (IMAGES MD012404 from the Okinawa Trough)[J]. Terrestrial Atmospheric and Oceanic Sciences, 2008, 19(4): 389–401.
- [42] Sun Youbin, Oppo D W, Xiang Rong, et al. Last deglaciation in the Okinawa Trough: subtropical Northwest Pacific link to northern Hemisphere and tropical climate[J]. Paleoceanography and Paleoclimatology, 2005, 20(4): PA4005.
- [43] 刘磊, 许兰芳, 管红香, 等. 冲绳海槽中部8.2 ka以来GDGTs组成及温度重建[J]. 热带海洋学报, 2020, 39(6): 77-92.
 Liu Lei, Xu Lanfang, Guan Hongxiang, et al. The source of glycerol dibiphytanyl glycerol tetraethers and temperature reconstruction since 8.2 ka in the central Okinawa Trough[J]. Journal of Tropical Oceanography, 2020, 39(6): 77-92.
- [44] Zheng Xufeng, Li Anchun, Wan Shiming, et al. ITCZ and ENSO pacing on east Asian winter monsoon variation during the Holocene: sedimentological evidence from the Okinawa Trough[J]. Journal of Geophysical Research: Oceans, 2014, 119(7): 4410–4429.
- [45] 王玥铭, 窦衍光, 李军, 等. 16 ka以来冲绳海槽中南部沉积物物源演化及其对古气候的响应[J]. 沉积学报, 2018, 36(6): 1157–1168. Wang Yueming, Dou Yanguang, Li Jun, et al. Sediment provenance change and its response to paleochimate change in the middle Okinawa Trough since 16 ka[J]. Acta Sedimentologica Sinica, 2018, 36(6): 1157–1168.
- [46] 杨宝菊, 吴永华, 刘季花, 等. 冲绳海槽表层沉积物元素地球化学及其对物源和热液活动的指示[J]. 海洋地质与第四纪地质, 2018, 38(2): 25-37.

Yang Baoju, Wu Yonghua, Liu Jihua, et al. Elemental geochemistry of surface sediments in Okinawa Trough and its implications for provenance and hydrothermal activity[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 25–37.

- [47] 张丹丹, 曾志刚, 殷学博. 冲绳海槽中部沉积物物质来源和沉积环境分析[J]. 海洋学报, 2017, 39(7): 92-101.
 Zhang Dandan, Zeng Zhigang, Yin Xuebo. Analysis on sediment provenance and environmental changes in the middle Okinawa Trough[J]. Haiyang Xuebao, 2017, 39(7): 92-101.
- [48] 窦衍光,陈晓辉,李军,等.东海外陆架-陆坡-冲绳海槽不同沉积单元底质沉积物成因及物源分析[J].海洋地质与第四纪地质, 2018, 38(4): 21-31.

Dou Yanguang, Chen Xiaohui, Li Jun, et al. Origin and provenance of the surficial sediments in the subenvironments of the East China Sea[J]. Marine Geology & Quaternary Geology, 2018, 38(4): 21–31.

- [49] 赵一阳. 中国海大陆架沉积物地球化学的若干模式[J]. 地质科学, 1983, 18(4): 307-314.
 Zhao Yiyang. Some geochemical patterns of shelf sediments of the China seas[J]. Chinese Journal of Geology, 1983, 18(4): 307-314.
 [60] 弗伦 恭怜 天泡尔 第 志治典判断五志已送到她中意化了原始感示表的人在特征及其控制用表印。 這從地氏上第四位地氏 2
- [50] 程俊,黄怡,王淑红,等.南海典型断面表层沉积物中氧化还原敏感元素的分布特征及其控制因素[J].海洋地质与第四纪地质,2019, 39(2):90-103.

Cheng Jun, Huang Yi, Wang Shuhong, et al. Distribution pattern and controlling factors of redox sensitive elements in the surface sediments from four typical transects in the South China Sea[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 90–103.

- [51] 蒋富清, 李安春. 冲绳海槽南部表层沉积物地球化学特征及其物源和环境指示意义[J]. 沉积学报, 2002, 20(4): 680-686. Jiang Fuqing, Li Anchun. Geochemical characteristics and their implications to provenance and environment of surface sediments from the South Okinawa Trough[J]. Acta Sedimentologica Sinica, 2002, 20(4): 680-686.
- [52] Brumsack H J. The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shale formation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2/4): 344–361.
- [53] Kao S J, Wu C R, Hsin Y C, et al. Effects of sea level change on the upstream Kuroshio current through the Okinawa Trough[J]. Geophysical Research Letters, 2006, 33(16): L16604.
- [54] Kao S J, Roberts A P, Hsu S C, et al. Monsoon forcing, hydrodynamics of the Kuroshio current, and tectonic effects on sedimentary carbon and sulfur cycling in the Okinawa Trough since 90 ka[J]. Geophysical Research Letters, 2006, 33(5): L05610.
- [55] 胡邦琦. 中国东部陆架海泥质沉积区的物源识别及其环境记录[D]. 青岛: 中国海洋大学, 2010. Hu Bangqi. Sediment provenance discrimination and paleoenvironment records in the mud area of East China seas since the holocene[D]. Qingdao: Ocean University of China, 2010.
- [56] 王佳泽,李安春,黄杰. 17000年以来冲绳海槽中部沉积物物源演化及其古环境记录[J]. 海洋地质与第四纪地质, 2013, 33(6):

77

Wang Jiaze, Li Anchun, Huang Jie. Sediment provenance and paleoenvironment records of the central Okinawa Trough for the last 17000 years[J]. Marine Geology & Quaternary Geology, 2013, 33(6): 105–114.

- [57] Liu J P, Milliman J D, Gao Shu, et al. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea[J]. Marine Geology, 2004, 209(1/4): 45–67.
- [58] 朱纯, 潘建明, 卢冰, 等. 长江、老黄河口及东海陆架沉积有机质物源指标及有机碳的沉积环境[J]. 海洋学研究, 2005, 23(3): 36-46. Zhu Chun, Pan Jianming, Lu Bing, et al. Source indication and accumulative effect of sedimentary organic matter in the Changjiang Estuary, the old Huanghe River subaqueous delta and the East China Sea shelf[J]. Journal of Marine Sciences, 2005, 23(3): 36-46.
- [59] 窦衍光,杨守业,唐珉,等.冲绳海槽中部28 ka以来陆源物质输入和古环境演化的生源组分记录[J]. 第四纪研究, 2011, 31(2): 236-243.

Dou Yanguang, Yang Shouye, Tang Min, et al. Using biogenic components to decipher the terrigenous input and paleoenvironmental changes over the last 28 ka in the middle Okinawa Trough[J]. Quaternary Sciences, 2011, 31(2): 236–243.

- [60] Brummer G J A, van Eijden A J M. "Blue-ocean" paleoproductivity estimates from pelagic carbonate mass accumulation rates[J]. Marine Micropaleontology, 1992, 19(1/2): 99–117.
- [61] Vanderzwaan G J, Jorissen F J , Zachariasse W J. Approaches to Paleoproductivity Reconstructions[J]. Marine Micropaleontology, 1992(1/2): R5-R6.
- [62] 韦恒叶. 古海洋生产力与氧化还原指标——元素地球化学综述[J]. 沉积与特提斯地质, 2012, 32(2): 76-88.
 Wei Hengye. Productivity and redox proxies of palaeo-oceans: an overview of elementary geochemistry[J]. Sedimentary Geology and Tethyan Geology, 2012, 32(2): 76-88.
- [63] 黄永建, 王成善, 汪云亮. 古海洋生产力指标研究进展[J]. 地学前缘, 2005, 12(2): 163-170.
 Huang Yongjian, Wang Chengshan, Wang Yunliang. Progress in the study of proxies of paleocean productivity[J]. Earth Science Frontiers, 2005, 12(2): 163-170.
- [64] 邹亮, 韦刚健, 李军. 海洋沉积物中生物成因Ba的海洋生产力研究[J]. 第四纪研究, 2011, 31(2): 307-315.
 Zou Liang, Wei Gangjian, Li Jun. Review on ocean productivity by using biogenic Ba in marine sediments[J]. Quaternary Sciences, 2011, 31(2): 307-315.
- [65] Huo Suxia, Xiu Chun, Zhang Xu, et al. Geochemical characteristics of biogenic barium in sediments of the Antarctica Ross Sea and their indication for paleoproductivity[J]. Indian Journal of Geo-Marine Sciences, 2020, 49(2): 241–248.
- [66] Berner R A. Early Diagenesis: A Theoretical Approach[M]. Princeton: Princeton University Press, 1980.
- [67] 吴雪停, 刘丽华, 吴能友, 等. 海洋沉积物中早期成岩作用地球化学研究进展[J]. 海洋地质前沿, 2015, 31(12): 17-26.
 Wu Xueting, Liu Lihua, Wu Nengyou, et al. Geochemistry of early diagenesis in marine sediments: research progress[J]. Marine Geology Frontiers, 2015, 31(12): 17-26.
- [68] Löwemark L, Steinke S, Wang C H, et al. New evidence for a glacioeustatic influence on deep water circulation, bottom water ventilation and primary productivity in the South China Sea[J]. Dynamics of Atmospheres and Oceans, 2009, 47(1/3): 138–153.
- [69] 邹建军, 石学法, 李乃胜, 等. 长江口氧化还原敏感元素的早期成岩过程[J]. 地球科学: 中国地质大学学报, 2010, 35(1): 31-42. Zou Jianjun, Shi Xuefa, Li Naisheng, et al. Early diagenetic processes of redox sensitive elements in Yangtze Estuary[J]. Earth Science: Journal of China University of Geosciences, 2010, 35(1): 31-42.
- [70] Wu Yijing, Fan Daidu, Wang Deli, et al. Increasing hypoxia in the Changjiang Estuary during the last three decades deciphered from sedimentary redox-sensitive elements[J]. Marine Geology, 2020, 419: 106044.
- [71] Laluraj C M, Nair S M. Geochemical index of trace metals in the surficial sediments from the western continental shelf of India, Arabian Sea[J]. Environmental Geochemistry and Health, 2006, 28(6): 509–518.
- [72] Cheng Jun, Huang Yi, Wang Shuhong, et al. Transect variations and controlling factors of redox-sensitive trace element compositions of surface sediments in the South China Sea[J]. Continental Shelf Research, 2019, 190: 103978.
- [73] Berrang P G, Grill E V. The effect of manganese oxide scavenging on molybdenum in Saanich inlet, British Columbia[J]. Marine Chemistry, 1974, 2(2): 125–148.
- [74] 解兴伟, 袁华茂, 宋金明, 等. 东海季节性低氧海区柱状沉积物中氧化还原敏感元素对沉积环境变化的响应[J]. 海洋学报, 2020, 42(2): 30-43.

Xie Xingwei, Yuan Huamao, Song Jinming, et al. Response of redox sensitive elements to changes of sedimentary environment in core sediments of seasonal low-oxygen zone in East China Sea[J]. Haiyang Xuebao, 2020, 42(2): 30–43.

- [75] 王家凯,李铁刚,熊志方,等. 南极罗斯海氧化还原敏感元素沉积地球化学特征及其古海洋意义[J]. 海洋地质与第四纪地质, 2018, 38(5): 112-121.
 Wang Jiakai, Li Tiegang, Xiong Zhifang, et al. Sedimentary gochemical characteristics of the redox-sensitive elements in Ross Sea, Antarctica: implications for paleoceanography[J]. Marine Geology & Quaternary Geology, 2018, 38(5): 112-121.
- [76] 史向明. 近海沉积物-水界面的耗氧和氧化还原敏感元素(Fe、Mn)的迁移[D]. 厦门: 厦门大学, 2019. Shi Xiangming. Benthic oxygen consumption and the transport of redox sensitive elements (Fe and Mn) across the sediment-water interface in coastal seas[D]. Xiamen: Xiamen University, 2019.

^{105-114.}

- [77] McKee B A, DeMaster D J, Nittrouer C A. Uranium geochemistry on the Amazon Shelf: evidence for uranium release from bottom sediments[J]. Geochimica et Cosmochimica Acta, 1987, 51(10): 2779–2786.
- [78] McManus J, Berelson W M, Klinkhammer G P, et al. Authigenic uranium: relationship to oxygen penetration depth and organic carbon rain[J]. Geochimica et Cosmochimica Acta, 2005, 69(1): 95–108.
- [79] Crusius J, Thomson J. Comparative behavior of authigenic Re, U, and Mo during reoxidation and subsequent long-term burial in marine sediments[J]. Geochimica et Cosmochimica Acta, 2000, 64(13): 2233–2242.
- [80] 林玉雯. 华南埃迪卡拉纪晚期缺氧页岩中微量元素的空间分布及其古环境意义[D]. 昆明: 云南大学, 2020. Lin Yuwen. Spatial distribution of trace metals in anoxic shale and its implication for paleoenvironment during the late Ediacaran, South China[D]. Kunming: Yunnan University, 2020.
- [81] 任艺君. 长江口低氧区沉积物-海水界面氧化还原敏感元素的响应机制研究[D]. 青岛: 自然资源部第一海洋研究所, 2019. Ren Yijun. Study on the response mechanism of redox-sensitive elements at the sediment-seawater interface in the hypoxic zone of the Yangtze Estuary[D]. Qingdao: First Institute of Oceanography, Ministry of Natural Resources, 2019.
- [82] Bahk J J, Chough S K, Jeong K S, et al. Sedimentary records of paleoenvironmental changes during the last deglaciation in the Ulleung Interplain Gap, East Sea (Sea of Japan)[J]. Global and Planetary Change, 2001, 28(1/4): 241–253.
- [83] 常华进,储雪蕾,冯连君,等.氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评, 2009, 55(1): 91-99.
 Chang Huajin, Chu Xuelei, Feng Lianjun, et al. Redox sensitive trace elements as paleoenvironments proxies[J]. Geological Review, 2009, 55(1): 91-99.
- [84] 陈炳辉, 韦慧晓, 黄志国, 等. 表生地质体的Ce异常及其影响因素综述[J]. 稀土, 2007, 28(4): 79-83.
 Chen Binghui, Wei Huixiao, Huang Zhiguo, et al. Cerium anomalies in supergene geological bodies and its effecting factors[J]. Chinese Rare Earths, 2007, 28(4): 79-83.
- [85] 任江波. 海水稀土的Ce负异常特征及其启示[J]. 地质论评, 2015, 61(S1): 36-37.
 Ren Jiangbo. Characteristics of Ce negative anomaly of rare earths in seawater and its enlightenment[J]. Geological Review, 2015, 61(S1): 36-37.
- [86] 吴明清, 欧阳自远. 铈异常——一个寻迹古海洋氧化还原条件变化的化学示踪剂[J]. 科学通报, 1992(3): 242-244.
 Wu Mingqing, Ouyang Ziyuan. Cerium anomaly—a chemical tracer for tracing the changes of redox conditions in ancient oceans[J].
 Chinese Science Bulletin, 1992(3): 242-244.
- [87] Wignall P B, Myers K J. Interpreting benthic oxygen levels in mudrocks: a new approach[J]. Geology, 1988, 16(5): 452-455.
- [88] 许淑梅,张晓东,翟世奎,等.海洋环境中氧化还原敏感性微量元素的地球化学行为及环境指示意义[J].海洋地质动态,2007,23(3): 11-18.

Xu Shumei, Zhang Xiaodong, Zhai Shikui, et al. The geochemistry of redox sensitive trace elements and their environmental implications[J]. Marine Geology Letters, 2007, 23(3): 11–18.

- [89] Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/4): 111–129.
- [90] Tyson R V, Pearson T H. Modern and ancient continental shelf anoxia: an overview[J]. Geological Society, London, Special Publications, 1991, 58(1): 1–24.
- [91] Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark shale member of the Dennis limestone, Wabaunsee County, Kansas, U. S. A[J]. Chemical Geology, 1992, 99(1/3): 65–82.
- [92] 杨季华,罗重光,杜胜江,等. 高黏土含量沉积岩古环境指标适用性讨论[J]. 矿物学报, 2020, 40(6): 723-733.
 Yang Jihua, Luo Chongguang, Du Shengjiang, et al. Discussion on the applicability of paleoenvironmental index for sedimentary rocks with high clay content[J]. Acta Mineralogica Sinica, 2020, 40(6): 723-733.
- [93] Algeo T J, Morford J, Cruse A. New applications of trace metals as proxies in marine paleoenvironments[J]. Chemical Geology, 2012, 306–307: 160–164.
- [94] 周炼, 苏洁, 黄俊华, 等. 判识缺氧事件的地球化学新标志——钼同位素[J]. 中国科学: 地球科学, 2011, 54(7): 1024-1033. Zhou Lian, Su Jie, Huang Junhua, et al. A new paleoenvironmental index for anoxic events—Mo isotopes in black shales from Upper Yangtze marine sediments[J]. Science China: Earth Sciences, 2011, 54(7): 1024-1033.
- [95] Rozanov A G, Volkov I I. Bottom sediments of Kandalaksha Bay in the White Sea: the phenomenon of Mn[J]. Geochemistry International, 2009, 47(10): 1004–1020.
- [96] Lu Bo, Li Tiegang, Yu Xinke, et al. Redox conditions in sediments and during sedimentation in the Ontong Java Plateau, west equatorial Pacific[J]. Chinese Journal of Oceanology and Limnology, 2011, 29(6): 1309–1324.

Occurrence mechanism of redox sensitive elements in columnar sediments in South Central Okinawa Trough and their environmental implications

Xu Xiaoyan^{1,2}, Dou Yanguang^{2,3}, Zhang Yong^{2,4}, Chen Xiaohui^{2,4}, Sun Zhilei^{2,4}, Bai Fenglong^{2,4}, Zhai Bin^{2,4}, Wang Libo^{2,4}, Zou Liang^{2,4}

(1. College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan 430074, China; 2. Qingdao Institute of Marine Geology, China Geological Survey, Qingdao 266237, China; 3. Laboratory for Marine Geology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; 4. Laboratory for Marine Mineral Resource, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; 4. Laboratory for Marine Mineral Resource, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; 4. Laboratory for Marine Mineral Resource, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China)

Abstract: Changes in the content of redox sensitive elements (RSE) in sediments are good surrogate indicators for the redox environment of the overlying water. The RSE in the columnar sediments under complex environmental backgrounds through the grain size, total organic carbon and total nitrogen and its isotopes contents, and redox sensitive elements contents of the two columnar sediments (30 cm) in South Central Okinawa Trough are explored in this paper. And to explore the occurrence mechanism and environmental indication significance. The study found that in addition to the depletion of Cr in the columnar sediments, other RSEs showed different degrees of enrichment. The "grain size effect" has little effect on the RSE content of columnar sediments in the Okinawa Trough; analysis and judgment show that seawater surface productivity is the main factor affecting the redox environment of sediments, and RSE is achieved through the adsorption or desorption of Mn (hydrogen) oxides enrichment and loss. Indicators such as δCe , V/(V+Ni), Ni/Co and V/Cr indicate that the sediment is in an oxic-dysoxic water environment. The Mn element in the sediment diffuses upward in the form of Mn²⁺ through reduction, and is oxidized and enriched by oxygen-containing interstitial water at 25–30 cm to form a manganese peak. The 0–25 cm columnar sediment is in an oxic water column, and 25–30 cm is in a dysoxic water column.

Key words: environmental implications; redox sensitive element; Mn (hydrogen) oxide; columnar sediments; Okinawa Trough